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Abstract

Computer Vision has become a constant presence in everyday life in recent years. Thanks 
to the price reduction of apparatus and the increase of computational power, Computer Vi-
sion based techniques are the weapon of choice in various scenarios, from high accuracy 
3D reconstruction and photogrammetry to the automatic analysis of video surveillance 
images and face recognition-based login systems. 
Recent interest of the game industry in gesture-based interaction paradigms further 
fostered the presence of image sensing apparatus in our homes. This thesis is 
dedicated to the exploitation of this variety of low-cost devices to develop useful 
applications to be used in both the industrial field and home entertainment world. The 
accurate calibration of the image sensing devices is a fundamental step to allow 
further reasoning on the acquired scene. 
The first part of the thesis by introducing some advanced camera calibration techniques 
effective in the calibration of low-end consumer cameras in which manufacturing 
imperfection makes them more likely to diverge from the common parametric models. 
Beside 2D images processing, the recent diffusion of depth-cameras, as the Mictosoft 
KinectR sensor, allows to exploit also three-dimensional data. This information is 
particularly useful when we need to recognize user’s gesture, but its analysis introduces 
a new challenging problem: the Non-Rigid matching of shapes. In the second part of 
the thesis we tackle this problem with two method that try to retrieve respectively 
sparse and dense correspondence between two or more partial shapes. 
In the last part we propose some applications exploiting all the notions and techniques 
introduced. We present three applications of Computer Vision techniques to the HCI 
world. Two tracking devices are developed to enable the definition of new interaction 
paradigms to be applied in different scenarios: an Interactive Table, an Interactive 
Witeboard and a Viewer Dependent display.





Sommario

Negli ultimi anni la Computer Vision è diventata una presenza costante nella vita quotid-
iana di ognuno di noi. Grazie alla riduzione del prezzo degli apparati e all‘aumento della 
potenza di calcolo, le tecniche basate sulla Computer Vision sono diventate un ottimo 
strumento da applicare in diversi scenari, dall’acquisizione della struttura tridimension-
ale degli oggetti, alla fotogrammetria sino all‘analisi automatica delle immagini di video 
sorveglianza e l‘utilizzo in sistemi automatici di autenticazione basati sul riconoscimento 
facciale. 
Il recente interesse del settore video-ludico in nuovi paradigmi di interazione basati su 
gesture recognition ha ulteriormente incrementato la presenza di apparati di ac-
quisizione video (e non solo) nelle nostre case. Questa tesi è dedicata all’utilizzo di 
questa varietà di dispositivi a basso costo per lo sviluppo di applicazioni utili sia nel 
campo industriale che nel mondo dell’home-entertainment. 
Il primo contributo di questa tesi riguarda lo sviluppo di alcune tecniche avanzate di 
calibrazione degli apparati di acquisizione, con particolare attenzione a dispositivi a basso 
costo che, a causa delle imperfezioni nella produzione, sono più propensi a divergere dai 
modelli parametrici comuni. Oltre ad immagini bidimensionali, la recente diffusione di 
camere di profondità, come per esempio il sensore Mictosoft KinectR, permette di 
acquisire insieme all‘immagine anche infor-mazioni relative alla tridimensionalità della 
scena. Questi dati sono particolarmente utili quando dobbiamo riconoscere movimenti del 
corpo e gesti effettuati dagli utenti, tuttavia la loro analisi introduce un nuovo problema: 
la ricerca di corrispondenza tra forme ”non rigide”. Questo problema è affrontato nella 
seconda parte della tesi con due metodi che cercano di trovare delle corrispondenza sia 
sparse che dense tra due o più forme in presenza di parzialità. 
Nell‘ultima parte sono proposte alcune applicazioni che sfruttano le nozioni e le tecniche 
introdotte precedentemente per lo sviluppo di nuovi paradigmi di interazione mediante la 
progettazione di due dispositivi di tracking applicati in diversi scenari: un tavolo 
interattivo, una Witeboard interattiva e un Viewer Dependent display.
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Preface

Before starting I want to briefly introduce myself, my experience during these three years
as PhD student and better specify my contribution in the works presented hereafter.

I started my PhD three years ago in the field of Computer Vision. I was lucky to
become part of a very active and dynamic group. Since the first days of my PhD I was
involved in their research activity. It has been - and it still is - a very stimulating re-
lationship where intense activity periods was interleaved to hilarious moments and side
lighthearted projects. This greatly contributed in improving my experience inside this
splendid research group.

As the reader probably noticed from my Publications List, working inside a team
means that everyone is involved on most of the group’s projects and this results in a fairly
high number of publications. Just to be correct with the reader and my teammates I want
to briefly explain my contribution in the aforementioned publications.
There are projects in which I was involved on the way and others in which I play a more
important role. My publications can be sub-dived into three categories: camera calibra-
tion, interaction, and non-rigid matching.

The first category was the main interest of the CV research group when I first joined.
Although in some of these works I played a marginal role, I gave a relevant contribution
in the projects regarding the model free camera calibration. Specifically, my contribution
to the work presented in sections 3.1 [32] and 3.2 [11] concerns mainly the experimental
section. I put them on this thesis since they was my first experience in the field of Com-
puter Vision. In the next calibration methods, described in sections 4.1 and 4.2 [8, 10]
about the model free camera calibration, I worked to adapt the model free calibration
technique to the particular setups and on to elaborate an outlier detection procedure.

Besides the camera calibration topic, my research activity here in Venice was mainly
focused on the HCI from a Computer Vision point of view, and it is indeed to this research
area that most of my publications belong [1–7,9,13,14]. In all these works, some of which
are described in chapter 8, my contribution concerns more the Computer Vision aspects
of the user tracking than the study of the interaction paradigms adopted.

Finally, the two works about Non-Rigid matching [15,16] described in the second part
of this thesis are the result of a collaboration with the TUMunich Computer Vision Group
led by Prof. Dr. Daniel Cremers and they are two works of which I’m proud. I spent four
exiting months in Munich working side by side with Emanuele Rodolá who has revealed
himself - once again - to be an excellent mentor and an even more awesome beer drinker!

I would like to thank all of my team mates for their guidance and support during these
three years and I’m glad to had Prof. Andrea Torsello as my supervisor for he has been
always present when we needed him for advice and he always supported us in our ideas
and scientific interests. It goes without saying that I am also grateful to all my friends -
because study is not all in life - and my family for their moral and financial support during
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this long and fruitful period of my life lasted for almost 30 years.
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1
Introduction

Computer Vision has become a constant presence in everyday life in recent years. Thanks
to the price reduction of apparatus and the increase of computational power, Computer Vi-
sion based techniques are the weapon of choice in various scenarios, from high accuracy
3D reconstruction and photogrammetry to the automatic analysis of video surveillance
images and face recognition-based login systems. Recent interest of the game industry in
gesture-based interaction paradigms further fostered the presence of sensing apparatus in
our homes. Nintendo was the first company to make of his famous wireless motion con-
troller (Wii Remote) the battle horse of his gaming console. Sony and Microsoft immedi-
ately answered respectively with the PlayStation MoveTM and the Microsoft Kinect R©. Of
particular success has been the later, probably thanks to the absence of a specific device to
be held by the users. It is indeed based on a depth sensor from which the user’s skeleton
is retrieved allowing to recognize a wide range of user gestures. Recently, many others
embedded device to track user’s position and/or gestures have been introduced into the
market (e.g. Leap MotionTM, Creative Senz3DTM, Xtion PROTM, etc.). The availability of
such low-cost tracking systems together with the development of innovative visualization
devices (the immersive steroscopic display Oculus Rift R© to cite one over all) has started
a completely new era of the consumer entertainment.

When we deal with systems based on the elaboration of data acquired by image sens-
ing devices a mandatory step in almost all these setups is the recovery of all the parameter
that determine the inner working of the imaging system. For instance, 3D reconstruc-
tion, photogrammetry and in general every process that involves geometrical reasoning
on objects deeply rely on such knowledge. One of the most straightforward method to
be able to accurately describe the acquisition process is to build a mathematical model
able to approximately define the optical behavior of rays entering the camera through the
optics and hitting the sensing image plane (CCD or CMOS in digital cameras). The Cam-
era Calibration task consists in retrieving all the parameters of the adopted mathematical
model to better reflect the characteristic of a specific setup. It is usually performed by
showing to the camera (or cameras) a Fiducial Marker, that is a well known object with
a particular geometrical structure that allows it to be easily identified inside the acquired
scene. Exposing several times the Fiducial Marker to the cameras in different positions
allows to collect enough information to be able to fully constraint the model parameters.
The simplest and widely diffused camera model is the Pinhole Model. In the Pinhole
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Figure 1.1: A simple camera network setup composed by two pinhole cameras. The
reprojection of a planar RuneTAG Fiducial Marker onto the image plane of the two images
is fully determined by the intrinsic parameters of the two cameras and their position with
respect to the object.

Model (see figure 2.1) the light rays hitting the CCD are assumed to pass through the
same physical point o, namely the optical center. The distance between this point and the
image plane, where the image is projected, is the focal length f . With these few parame-
ters we can describe the acquisition process of a single camera, moreover by introducing
a roto-translation parameter we can describe more complex setups composed by two or
more cameras (see Figure 1.1).

To this kind of approaches belongs the method described in section 3.1. We propose
a novel Fiducial Marker based on circular features disposed in concentric rings. It is de-
signed to allow to use different amounts of dots and, thanks to a cyclic code encoding
schema, it is robust to the occlusion of a large amount of the marker surface. The combi-
nation of these two characteristic makes this marker suitable in different situations, from
the Camera Calibration (in its denser version), to Augmented Reality applications.

Unfortunately, the mathematical model adopted is not always able to accurately de-
scribe the behaviour of the rays entering the camera. This is particularly true when we
deal with low-cost hardware where the optics quality and the construction process are of
low-quality. To tackle this problem in Chapter 4 we explore the potentiality of the un-
constrained camera model introduced in [33]. We claim that [33] is indeed a powerful
tool to describe an optical behavior diverging from the Pinhole model. In section 4.1 we
apply the unconstrained model to provide an online calibration of the projector of a Struc-
tured Light 3D Scanner. Thanks to the robust outlier technique introduced we are able
to increase both coverage and accuracy of the resulting acquisition. The recent commer-
cialization of the new LytroTM light-field camera brought also the plenoptic technology
(see Figure 1.2)into the consumer market. In light-field cameras the central assumption
is dropped, this makes them an ideal test case for a fully unconstrained model. In sec-
tion 4.2 we investigate the ability of such a calibration technique to deal with this kind
of cameras. Finally, in section 4.3 we step back to the centrality assumption and propose
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(a) (b)

Figure 1.2: Left: A schematic rapresentation of the Lytrocamera. Right: The scene pro-

jection process on a plenoptic camera based on array of micro lenses.

a non-parametric distortion model for central cameras. Albeit being less accurate with

respect to the fully unconstrained model, this calibration techniques allows us to exploit

the complete set of mathematical tools derived from projective geometry (e.g. line and

conic invariant, epipolar geometry, etc.).

Although it is very important to accurately calibrate the model describing the optical

behavior of our camera network setup, it is only a preliminary step. The core of a Com-

puter Vision application lies in the processing of the acquired data. It is a task strictly

dependent on the application, it could span from the accurate estimation of an acquired

object dimensions, as in a photogrammetry application (section 3.2), to the reconstruc-

tion of the three-dimensional structure of a object in order to acquire its model or to

perform further reasoning on its shape. From the point of view of an interaction appli-

cation some of the most important tasks concern the object tracking and the estimation

of user’s pose and gestures. Gesture tracking can be performed in different ways: by

using specially crafted devices to be held by users, as we will see later, or by acquiring

the body position of a part or the whole user’s body and trying to reconstruct its move-

ments. Microsoft Kinect R© sensor, for instance, adopts this later approach by retrieving

Euclidean distance in R3

Geodesic distance

Figure 1.3: Left: an example of a Non-Rigid matching between two human bodies. Right:

difference between the geodesic distance on the manifold and the euclidean distance in

the embedding space R
3.
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the human body skeleton from the acquired depth-map. If skeleton extraction is one of

the possible uses of the depth map, far more interesting is the retrieving of the complete

body surface. However, conversely from a rigid transformation which is the typical case

in three dimensional scanners, when we observe a human body moving we have to deal

with its non rigidity, that is, the bending of human arts doesn’t preserve the Euclidean

distance between two points on the surface (see Figure 1.3). This makes finding matching

points over the surface very difficult. In section 6.1 we propose a method to find sparse

correspondences among a collection of shapes that, thanks to a L1 optimization cost, is

very robust to outliers in the collection and allows for shape partiality. In section 6.2 we

try to find a dense correspondence between a full shape and a partial one. This case is

particularly important since it represents a possible scenario in the scanning of a human

body. We cast the matching problem into the framework of Functional Maps [171] and

we exploit some properties of Laplacian decomposition under the presence of partiality

to better constrain the optimization of the functional map between the two shapes. At the

end of the section we also investigate some ideas to extend this method to the partial vs.

partial case which would lead to the ability to reconstruct a human body (or any other

quasi-isometric deformable shape) from a series of depth-images without requiring the

subject to stand still.

The ability to track user pose and gestures enabled the HCI community to develop

new interaction paradigms to interact with computer systems in a more natural and intu-

itive way. One thriving field of application of such techniques is the so called Interactive
Tables (Figure 1.4). They have proved to be a viable system to foster user participation

and interest in many shared environments, among which educational and cultural envi-

ronments such as museums and exhibitions have a leading role. They favor interaction

among users and induce a sort of serendipitous discovery of knowledge by observing

the information exploration performed by other users. Their use has been analyzed and

evaluated in entertainment as well as in educational applications [25, 67, 113, 119].

In the educational perspective of HCI applications an important role is played by In-
teractive Whiteboards. The term Interactive Whiteboard (IWB) usually refers to a wide

class of hardware and software bundles that share the common goal of serving as a techno-

Figure 1.4: Left: A group of people operating on the map based multiuser art browser

described. Right: Schematic representation of the components of the proposed multiuser

interactive table.
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logical substitute for traditional blackboards (or flipcharts) in both offices and educational
settings. Some studies find them to be a key component to enhance the performance of
both teachers and learners in the classroom [141]. Other surveys are more critical, as they
expose the limits of current implementations [200, 201]. Anyhow, their increasing adop-
tion spurs the interest of both researchers and practitioners in the design of innovative
supporting technologies, interaction models and teaching practices [198].

It is interesting to analyze the advantages of being able to track the user’s position
also from a visualization point of view rather than limiting to gesture tracking for input
purposes. Knowing the user’s head position allows to provide a Viewer Dependent ren-
dering of the scene. Viewer-dependent displays have been extensively proposed in recent
scientific literature, since they offer many advantages. For starters, they are able to guar-
antee that the viewed objects exhibit a correct size within the Euclidean space where the
user resides, thus allowing to interact with them naturally and to make meaningful com-
parisons between virtual and physical prototypes. The correct dimensional perception of
virtual objects can be further increased by the adoption of a stereoscopic rendering. This
implies knowing the position of each on the two eyes of the user in order to provide the
correct rendering (see Figure 1.5).

In chapter 8 we apply the proposed techniques in the Human Computer Interaction
field in order to track user’s pose and gestures. Specifically, in section 8.1 we explain
the setup of a big Interactive Table build for a museum exhibition. Thanks to both an

(a) (b)

Figure 1.5: Left: The stereo inconsistency problem. Any stereo pair, when observed from
a location different from the position of the capturing cameras, will result in impaired
perception. Under these condition any observer will see an unpredictably distorted 3D
object. Right: images from a work by Artist Edgard Muller. The simulated perspective
only works if the observer stands in a very specific observation point (top).
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image based tracking and sensor (accelerometers) analysis of an active device, we are
able to handle multiple users in the navigation of some map-based content. Section 8.2
describes the implementation of a 5 degrees of freedom pointing device and its use in In-
teractive Whiteboard applications. The device is composed by two LEDs pulsating with
a sinusoidal patterns. While the device position is tracked in a frame-by-frame basis by
a camera network, the device identification and orientation disambiguation is entrusted
to a time domain analysis of the LEDs intensity. This allows us to handle multiple users
still maintaining the device geometry simple in order to be recognized in difficult visibil-
ity conditions (e.g. occlusions, distance from the camera). The device performance are
further increased in section 8.3 where we introduce an interpolation schema to provide a
better synchronization of the cameras involved in the network, and thus a higher accuracy
of the triangulated point.
Finally, in section 8.4 we use the same tracking device, embedded in a pair of shutter
glasses, to track the user head position and provide him with a viewer dependent stereo-
scopic rendering of the scene. This application is followed in section 8.5 by an interesting
analysis of the human perception of stereoscopics. This study investigate the ability of
humans of perceiving sizes in a virtual reality scenario where the virtual scene is mixed
with the real background.



I
Camera Calibration





2
Related Work

The recovery of all parameters that determine the inner working of an imaging device is
often a mandatory step to allow further analysis of a scene. For instance, 3D reconstruc-
tion, photogrammetry and in general every process that involves geometrical reasoning on
objects deeply rely on such knowledge. The first step in describing the imaging system of
a camera is to build a mathematical model trying to capture (and unavoidably simplify)
the optical behavior of the rays entering the camera and hitting the optical sensor (CCD or
CMOS). In the following we will review some most diffuse camera models, starting from
the simpler Pinhole Camera model and the most known image undistortion techniques.
We will see how we can exploit some projective geometry [106] invariants of the pinhole
model to estimate with high accuracy the parameters of such models using Fiducial Mark-
ers.
After an overview of some particular camera models for which the Pinhole Model is not
suitable, we will abandon any claim to build a camera specific imaging model and move
the attention toward the unconstrained calibration technique in which each (discretized)
camera ray is calibrated independently.

2.1 Pinhole model
For many applications, it is a good assumption to consider the camera to behave according
to the Pinhole Model. The simple geometrical principles of this camera model are known
since antiquity. Written references to the operation of the camera obscura can be found in
the writings of Mozi (470 to 390 BC) and later in the works of the Greek philosophers and
mathematicians Aristotele and Euclid [17]. In the Pinhole Model (see figure 2.1) the light
rays hitting the light sensitive plane (CCD or CMOS in digital cameras) are assumed to
pass through the same physical point o, namely the optical center. The distance between
this point and the image plane, where the image is projected, is the focal length f . From
these two simple entities, image plane and optical center, we can build two reference
systems:

• the 3D reference system of the camera world, which origin corresponds to the op-
tical center, the z axis, also known as optical axis, is perpendicular to the image
plane and x and y axes are chose so to be aligned with the pixel grid.
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(a) (b)

Figure 2.1: Left: A Camera Obscura illustration from the seventeenth century. Right: a

schematic of the projective geometry quantities involved in the Pinhole camera Model.

• the 2D image plane reference system, with x and y axes aligned with the pixels

grid (thus coherent with the camera word axis), and the center (cx, cy) set to the

intersection between the plane and the optical axis.

The projection of a point placed at coordinates p′ = (x, y, z) in the 3D camera reference

system onto the point p = (u, v) of the image plane is described by the equation:

λ

⎡
⎣uv
1

⎤
⎦ = K

⎡
⎣xy
z

⎤
⎦ , K =

⎡
⎣fx s cx
0 fy cy
0 0 1

⎤
⎦ (2.1)

where K is called the intrinsic camera matrix and λ is a term added to linearize the

projection operation which is not linear by nature. Moreover the focal length can assume

different values for the horizontal and vertical directions, respectively fx and fy, in order

to allow for non squared pixels of the CCD.

More generally, if we have a 3D point with respect to the ”real” world, we need

to bring him into the camera reference system by applying the proper rotation R and

translation T . Given a 3D point (x, y, z) expressed in affine coordinates, its projection

onto the image plane is thus governed by the liner equation:

λ

⎡
⎣uv
1

⎤
⎦ = K

[
R T
0 1

]⎡
⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦ (2.2)

2.1.1 Distortion
The Pinhole Model, albeit being very simple, is very widely adopted since it allows to

leverage very powerful mathematical tools like the epipolar geometry and the projective
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(a) (b) (c) (d)

Figure 2.2: Representation of the effect of the distortion on the projected point position.
In the barrel distortion (b) point on the image are displaced outward with respect to the
image center. This distortion effect is typical of wide angle optics. Conversely, with
pincushion distortion (c) points are displaced toward the image center. (d) shows an
example of tangential distortion.

invariance of lines and conics [106].
With cheap or wide optics, however, it is unable to accurately describe the image acquisi-
tion process of the camera since the image distortion phenomena comes into play.
The image distortion introduced by the lenses results in a displacement δ = (δu, δx) of
the reprojected 3D point onto the image plane. This displacement can be expressed as a
function of the ideal reprojection position itself: (ud, vd) = (u, v) + δ(u, v).

Main sources of distortion can be identified in both the lens manufacturing, and im-
proper lens and camera components assembly. The main distortion effects can be subdi-
vided in two categories:

Radial distortion : it is caused by an inaccurate radial curvature of lens. The effect is the
displacement of the image points toward or away from its center (see Figure 2.2b
2.2c). The displacement amount is usually related to the distance of the point from
the image center, as in the polynomial model proposed by Tsai [218].
Let ru,v =

√
u2 + v2 be the radial distance of the point (u, v), Tsai approximates the

displacement of the point by a polynomial with two non zero coefficients (k1, k2)
for the second and fourth degree term:

δu = (k1 ∗ r2
u,v + k2 ∗ r4

u,v)
u

r
, δv = (k1 ∗ r2

u,v + k2 ∗ r4
u,v)

v

r
(2.3)

Tangential distortion : albeit various work in literature [50, 218] demonstrated that ac-
counting only for radial distortion is enough for many applications and optics setup,
when high accuracy is sought other distortion sources need to be considered.
Misalignment of the optical centers of lens as well as slight tilt with respect to the
sensing surface (CCD) can result in a mixture of radial and tangential distortion,
see Figure 2.2d. This optical beahaviour was taken into account in the method pro-
posed by Weng [234]. He proposed to enhance the model [218] introducing four
coefficients accounting for lens misalignment and tilt.
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More we move away from the pinhole model and the more the distortion assumes
complex behaviors. Recently Claus and Fitzgibbon introduced theirs well-known rational
model [68] which approximate projection displacement with a rational function and it’s
able to handle wide optics and in some extent also catadioptric cameras1. Other models
have been proposed recently which differ in number and types of parameters [145, 229]
or specifically designed to handle high distorted cameras [196, 210].

2.2 Calibration
Once the appropriate camera model has been chosen, we need to retrieve the parameters
that better apply to the specific cameras and optics setup. If we aim at the best possible
accuracy, it is universally considered a successful approach to rely on a known calibration
target and exploit techniques that are able to recover camera parameters by exposing such
object to the camera under different poses. A widely adopted technique is the one intro-
duced in [251] based on a planar pattern composed by hundred of corner points for easy
localization. Furthermore, Heikkilä [109] exploit a grid of circular points to accurately re-
verse the distortion model. An interesting variation on the theme is proposed in [20] with
a technique that can simultaneously optimize camera and target geometry to overcome
manufacturing imperfections of the target.

Fiducial Markers An artificial marker is a physical artifact consistent with a given
model which can be used whenever a reliable pose estimation and identification is sought.
This is the case, for instance, for many Computer Vision tasks, ranging from robot track-
ing [96] and pose recovery [102, 110] to intrinsic [77] and extrinsic camera calibra-
tion [211]. Within these scenarios, the adoption of an artificial marker is often preferred
over less invasive alternatives, such as features that can be naturally found within the
scene. In fact, while more convenient from a practical point of view, natural features are
not guaranteed to be abundant in every scene or to exhibit an adequate level of detection
and recognition reliability. Furthermore, since an artificial marker can be used to sat-
isfy different needs, it is valuable to be able to create application-specific designs. For
these reasons, fiducial tags are not only a widely used tool in practice, but they are also a
lively research topic. Since a marker is usually created to be easily detected by a pinhole-
modeled camera, most approaches are designed to exploit the projective invariance of
basic geometrical entities. Specifically, most markers that can be found in literature are
based on projective-invariant features that are both simple and easy to detect, such as
points, lines, planes and conics. While it is difficult to track back to the earliest marker
designs, it is sensible to believe that circular dots were among the first shapes used. In
fact, circles appear as ellipses under projective transformations and the associated conic
is invariant with respect to intrinsic or extrinsic parameters of the camera. This allows a

1Optical system that combines the use of lens and mirrors are usually referred as catadioptric. The
introduction of mirrors in the optical system greatly complicates the distortion behavior allowing even to
capture 360◦ images.
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(a) (b) (c) (d) (e) (f)

Figure 2.3: Some examples of fiducial markers that differ both for the detection technique
and for the pattern used for recognition. In the first two, detection happens by finding
ellipses and the coding is respectively held by the color of the rings in Concentric Circles
(a) and by the appearance of the sectors in Intersense (b). While ARToolkit (c) uses image
correlation to differentiate markers, ARTag (d) relies in error-correcting binary codes.
Finally, in (e) and (f) we show two instances of RUNE-43 and RUNE-129 respectively.

fast and robust detection of the features directly on the image plane. Moreover, it is quite
straightforward to find a proper homography which transforms back the found ellipses in
circles, yielding an orthogonal view of the marker itself.

Such properties are exploited, for instance, in the earlier conception proposed by
Gatrell [98], adopting a set of highly contrasted concentric circles which, after detec-
tion, are validated using the correspondences between the centroids of the ellipses found.
In addition to the sheer feature localization, this design also allow to attach to each marker
some additional information payload. This is obtained by alternating white and black cir-
cles according to some predefined pattern. This design has been slightly enhanced in [66]
where the concentric circles are drawn using different colors and multiple scales, thus
allowing to embed more information. Dedicated “data rings” are added to the fiducial
design in [129] and [162]. A set of four circles located at the corner of a square is pro-
posed in [69], where an additional pattern is placed between the four dots in order to
distinguish between different targets. This ability to separate a set of different markers is
crucial for complex scenes where more than a single fiducial is required to better handle
occlusion or to track several objects at the same time. As an additional bonus, the avail-
ability of a coding scheme can be used to enable a validation step and to lower the number
of false positives. For these reasons, a lot of effort has been dedicated to the design of
effective coding schemas (see for instance [90, 157, 180]). A rather different but exten-
sively used approach for marker recognition is to leverage on the geometrical properties
of the cross ratio among detected feature points [142,215,219] or lines [224]. An interest-
ing advantage of the cross ratio is that, being projective invariant, the recognition can be
made without the need of any rectification of the image. Unfortunately, this comes at the
price of a low overall number of distinctively recognizable patterns, and thus concurrently
usable markers. In fact the cross ratio is a single scalar with a strongly non-uniform distri-
bution [118] and this limits the number of well-spaced different values that can possibly
be generated. Finally, also lines are a frequently used feature in the design of fiducial
markers. Usually, they are exploited by detecting the border edges of a highly contrasted
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(a) (b)

Figure 2.4: Left: A schematic rapresentation of the Lytrocamera. Right: The scene pro-
jection process on a plenoptic camera based on array of micro lenses. A standard camera
lens focuses the scene onto the micro lenses array that act like multiple small pinhole
cameras converging the captured rays to the device sensor. This way, the whole light field
entering the main lens can be acquired

quadrilateral block. This is the case, for instance, for the ARToolkit [123] system which
is often adopted as a reference baseline since it has a wide user base and its code is freely
available in source form. Due to the easiness of detection and reasonable pose recov-
ery accuracy that can be obtained with this kind of design [148], similar approaches are
found in many recent proposal, such as ARTag [91] and ARToolkitPlus [227]. With these
latter methods, the recognition technique of ARToolkit, which is based on image cor-
relation between arbitrary images, is replaced by the reading of a binary coded pattern
(see Fig. 2.3). The adoption of an error-correcting code makes both the marker detection
and identification very robust, in fact we can deem these designs as the most successful
from an applicative point of view. In section 3.1 we propose a new Fiducial Marker de-
sign , called RUNE Tag, based on concentric rings of dots and we explain the projective
geometry principles that allows us to easily spot and identify the marker inside an image.

2.3 Unconstrained imaging model

The pinhole model augmented with a proper distortion correction is undoubtedly the most
known and used method to approximate the optical acquisition process of most of the
cameras. There exist, however, cameras which optical behavior can’t be modeled by the
Pinhole Camera Model.

Catadioptric cameras, for instance, albeit maintaining the central point assumption
(all rays entering the camera cross the same point) are not suitable to be calibrated with
generic pinhole plus distortion camera models. Many ad-hoc solutions have been pro-
posed in literature to properly calibrate Catadioptric cameras [122, 191, 245].

Even more challenging are Plenoptic (light-filed) cameras (see figure 2.4). In Plenop-
tic cameras the single point of view requirement (and thus the central point assumption)
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Figure 2.5: Left: Schema of the unconstrained camera model involving the optical center

o, the ray direction, the observed and expected code and a target pose. Right: Rays and

calibration target poses recovered by the optimization. Only a subset of the camera rays

are plotted for visualization purposes.

is dropped.

In practice, most, if not all, the light-field devices ever built are made up of an array

(explicit or implicit) of traditional cameras, each one contributing to capture a portion of

the plenoptic function. The number, type and arrangement of such cameras, as well as

their calibration, has been a very active topic in recent research. One of the main hurdles

in plenoptic photography derives from the composite imaging formation process which

limits the ability to exploit the well consolidated stack of calibration methods that are

available for traditional cameras. While several efforts have been done to propose prac-

tical approaches [40, 65, 78, 120], most of them still rely on the quasi-pinhole behavior

of the single microlens involved in the capturing process. This results in several draw-

backs, ranging from the difficulties in feature detection, due to the reduced size of each

microlens, to the need to adopt a model with a relatively small number of parameters.

In [33] Bergamsco et al. describe an approach to calibrate the camera which does not

adopt any particular model. They, instead, calibrate independently each ray associated

with a camera pixel. Although in the aforementioned paper this calibration approach is

used to demonstrate its higher accuracy even in Pinhole-like cameras, it is in principle

suitable for a wide variety of imaging models and even for imaging systems that can

hardly be described by a parametric model.

In [33] each ray exiting from the camera and passing through the center of a CCD’s

pixel is modelled as a ray in the Euclidean space, totally independent from the behaviour

of the other rays. The ray associated with the ith pixel is written as ri = (di, pi) where

di, pi ∈ IR3 are the ray direction and a point on the ray respectively (see Figure 2.5). In

particular they are chosen so as ‖di‖ = 1 and dTi pi = 0.
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The resulting optimization problem has several millions of parameters (4 for each ray) and
it is not tractable using the most commonly used calibration techniques described in the
previous section. The authors adopts, instead, a dense fiducial marker exploiting the phase
coding with the number-theoretical phase unwrapping approach presented by Lilienblum
and Michaelis [143]. It is used to encode both the horizontal and vertical coordinate of
each pixel of a LCD display in which a series of sinusoidal patterns are showed over the
time. For each camera ray ri and target pose Θs = (Rs, ts) we have than an observed
code Cois and an expected code Ce(ri|Θs) computed as the intersection between the ray
ri and the target plane Θi.
The optimization problem is than resolved for both the camera rays r and the target poses
Θ casting it as generalized least squares problem minimizing the distances between the
observed and expected codes:

(r̂, Θ̂) = arg min
r,Θ

∑
i,j,s

(εsi )
T (Σs

i )
−1εsi (2.4)

where εsi = Cosi − Ce(ri|Θs) is the difference between the observed and expected code
and Σs

i is the (conditional) error covariance matrix accounting for the heteroscedasticity
of the error under the given pixel-pose combination.

In sections 4.2 we try to apply the unconstrained model to calibrate a Lytro light-field
camera [165] and use the calibration to retrieve the 3D structure of the scene.
In section 4.1 we use the same calibration technique to online calibrate the projector in
a stereo structured light scanner, increasing both the accuracy and coverage of acquired
reconstruction.

The drawback of the described approach is that epipolar geometry can’t be exploited
even for simply distorted pinhole cameras. In the work described in section [33] we try
to overcome this problem by constraining all the rays to pass through the same optical
centers, this allows us to bring us back to the Pinhole Camera model, but still maintain a
free distortion calibration.



3
Camera calibration exploiting image

features

The estimation of camera intrinsic parameters plays a crucial role in all computer vision
tasks for which the underlying model that drives the image formation process has to be
known. As a consequence, a deluge set of different approaches has been proposed in
literature over the last decades. Most of them optimize the model parameters minimizing
some re-projection error measure of the inferred three-dimensional scene in various shots
taken from different points of view .

A first distinction of the calibration techniques can be be done based on the kind of
scene that is considered for calibration. Some approaches rely only on the identification
of some distinctive (in the single image) and repeatable (among multiple images) features
present in natural scenes. Under controlled conditions, when high accuracy is needed, it is
generally a good idea to introduce into the scene artificial features. This allows to exploit
previous knowledge of the scene to better localize the features in the images and take
advantage of their spatial relation to filter outliers. Most of those lean on the observation
of a known object (i.e. a calibration target) from different point of views, providing the
necessary data to estimate the model through different optimization approaches.

In section 3.1 we will introduce a new Fiducial Markers designed as a set of planar
circles placed as to be easily recognized. If we aim to obtain the higher possible calibra-
tion accuracy, it is very important indeed to localize with high precision the position of the
corresponding features in both the image plane and 3D space. In the last section of this
chapter a method for the refinement of 3D ellipses is proposed. The method consists in
the optimization of the parameters of a 3D ellipse so that its re-projection onto the image
planes is coherent with the images acquired by a camera network. Although the appli-
cation context described in 3.2 could be misleading, it should be very straightforward to
integrate the optimization problem in a calibration pipeline (at least for the calibration of
camera extrinsic parameters) and we are working in this direction as a follow-up of this
work.
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3.1 An Accurate and Robust Artificial Marker based on
Cyclic Codes

In this section we introduce a novel fiducial marker that combines several strengths of
different approaches, resulting in an all-rounder that can be directly applied in many sce-
narios. The key idea underlying our design is to entrust the robustness of the detection
process to a well-grounded and occlusion-resilient cyclic code rather than to the geo-
metrical features themselves. The marker we are introducing is arranged to facilitate its
localization thanks to a reading frame that can be fully constrained using only two marker
dots. Furthermore, its design is flexible enough to allow to use different amounts of dots,
granting a higher robustness or a greater working distance, depending on the specific sce-
nario. Moreover, the large number of dots provided by our marker, beside boosting the
pose estimation accuracy, can be exploited to enable applications that are usually consid-
ered beyond the domain of fiducial markers, such as camera calibration.

This section is organized as follows: in 3.1.1 we describe the general design and we
introduce two localization methods, to be used respectively with calibrated and uncali-
brated cameras. Afterwards, we introduce the adopted coding strategy and we suggest
a technique to perform instant decoding, including proper recovery from errors due to
occlusion and misdetection of the marker dots. Finally, in 3.1.2 we test the accuracy
achieved when dealing with different real-world problems and we compare the obtained
performance with some widely used fiducial markers.

3.1.1 Rings of UNconnected Ellipses

We design our tags as a set of circular high-contrast features (dots) spatially arranged into
concentric layers (See Fig. 3.1). The tag internal area, delimited by the outer layer, is
divided into several evenly distributed circular sectors. Each layer and sector intersection
defines a slot that may or may not contain a dot.

In a tag composed by m layers and n sectors, we can encode a sequence of n symbols
taken from an alphabet of 2m elements. Each element of the alphabet is simply defined as
the binary number encoded by the presence or absence of a dot. For example, if the 14th

sector of a 3−layer tag contains a dot in the first and the last layer, we encode the 14th

symbol with the number 510 = 1012. In this section we propose two instances of such
design, namely RUNE-43 and RUNE-129. The first is composed by a single layer divided
into 43 sectors. Since the alphabet contains only 2 elements (1 bit given by the presence or
absence of a dot), each RUNE-43 encodes a sequence of 43 binary symbols. Conversely,
the latter is composed by 3 layers divided into 43 sectors. 3 slots for each sector allow to
encode a sequence of 43 symbols from an alphabet of 23 = 8 elements. Not surprisingly,
not all the possible codes can be used as valid codes for the tag. For instance, the tag
composed by only empty slots does not make any sense. Therefore, we require the coding
strategy to respect some properties to uniquely identify each dot regardless the projective
transformation involved. We discuss this topic in detail in section 3.1.1.



3.1. An Accurate and Robust Artificial Marker based on Cyclic Codes 19

Figure 3.1: Our proposed design divided into its functional parts. An instance of a 3-
layers RUNE-129 is displayed.

Finally, we set the dot radius equals to κ-times to the radius of the layer at which
the dot is placed. We can take advantage of this property to dramatically speed up the
detection as explained in section 3.1.1.

Candidate selection with a calibrated camera

One of the core features of every fiducial marker system is its ease of detection. Even
if one of our principles is to promote the accuracy over the speed, we still need to setup
an efficient way to identify each circular feature among the tags. Given an image, we
start by extracting a set of candidate dots. To do this, we use a combination of image
thresholding, contour extraction and ellipse fitting provided by the OpenCV library. Ad-
ditionally, a subsequent naive filtering step based on dot eccentricity and area keeps only
whose features respect a reasonable prior. Finally, each extracted ellipse can be further
refined by using common sub-pixel fitting techniques such the one proposed in [170]. We
give no additional details on the specific procedure we follow since is not important for
all the subsequent operations. Any suitable technique to extract a set of circular dots from
a generic scene would be fine.

At this point, we need a method to cluster all the candidate dots into different possible
tags and discard all the erroneous ones that were originated by noise or clutter in the scene.

Total ellipses 10 50 100 500

Full (RANSAC) 252 2118760 75287520 > 1010

Proposed method 45 1225 4950 124750

Table 3.1: Number of maximum possible RANSAC combinations required for ellipse
testing.
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(a) Feasible plane orientations es-

timation

(b) Candidate ring estimation (c) Dot vote counting

Figure 3.2: Steps of the ring detection: in (a) the feasible view directions are evaluated

for each ellipse (with complexity O(n)), in (b) for each compatible pair of ellipses the

feasible rings are estimated (with complexity O(n2)), in (c) the dot votes are counted, the

code is recovered and the best candidate ring is accepted (figure best viewed in color).

Since we know that the dots are arranged in circular rings, we expect that dots belonging

to the same layer would appear disposed around an elliptical shape once observed through

a central projection. Therefore, dots in the same layer can be identified by fitting an ellipse

through their 2D image coordinates and verifying the distance assuming this model.

A common approach would consist in the use of a RANSAC scheme that uses a set

of 5 candidate dots to estimate the model (i.e. the ellipse) against which quantify the

consensus of all the others. Unfortunately, since 5 points are needed to characterize an

ellipse into the image plane, the use of RANSAC in a scenario dominated by false pos-

itives (even without clutter we expect the majority of dots to belong to different tag or

even layer) would quickly lead to an intractable problem (See Table 3.1). A possible al-

ternative could be the use of a specialized Hough Transform [247], but also this solution

would not be effective since hindered by the relative low number of samples and the high

dimensionality of the parameter space.

What makes possible the detection of our tags in reasonable time is the observation

that there exist a relation between the shape of a dot and the shape of the ring in which

is contained. Specifically, they both appear as two ellipses (since they originate from a

projection of two circles) and the parameters of both curves depend on the relative angle

between the camera and the plane in which they lie. Even if from a single conic is not

possible to recover the full camera pose, there is still enough information to recover (up

to a finite set of different choices) a rotation that transform that conic into a circle. This,

combined with a known relation between the relative size of the dots and the rings, can

give clues of the geometry of a layer and so ease the clustering process.

In this section, we give a detailed description on how the recovering of such rotation

is done assuming a known camera matrix. In many situations, the requirement of a cal-

ibrated camera is not particularly limiting. For instance, if our tags would be used as a

coarse registration method for a structured-light scanner solution (we give examples of
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this in 3.1.2), the camera would certainly be calibrated as implied by the reconstruction
process. However, for the high accuracy exhibited in points localization, it would be in-
teresting to use our tags as a calibration target instead of a classical chessboard. To deal
with this situations, we propose a way to still use our tags in an uncalibrated scenario in
section 3.1.1.

Given the set of initial dot candidates, we start by recovering the parameters describing
their elliptical shape. Specifically, we translate the image reference frame so that the
principal point coincides with the origin, and parametrize each conic as the locus of point
such that:

xTQx =
(
u v 1

) A B −D
f

B C −E
f

−D
f
−E

f
− F
f2

uv
1

 = 0 (3.1)

Where f is the camera focal length and u, v are pixel coordinates with respect to the
optical center.

We follow [58] to estimate a rotation around the camera center that transforms the
ellipse described by Q into a circle. Specifically we decompose Q via SVD

Q = VΛVT with Λ = diag(λ1, λ2, λ3)

and compute the required rotation as:

RQ = V

 g cosα s1 g sinα s2h
sinα −s1 cosα 0

s1s2h cosα s2h sinα −s1g

 (3.2)

g =

√
λ2 − λ3

λ1 − λ3

, h =

√
λ1 − λ2

λ1 − λ3

where s1 and s2 are two free signs, leaving 4 possible matrices and α is any arbitrary
rotation aroud the normal of the plane which remains constrained while observing just a
single ellipse. At this point, if we fix α = 0, each detected ellipse Q may spawn four
different rotation matrices Ri

Q, i = 1 . . . 4 that transforms the conic into a circle (Fig.
3.3).

Since two of this four candidates imply a camera observing the back-side of the
marker, we can safely discard all the Ri

Q for which the plane normalN i
Q = Ri

Q

(
0 0 1

)T
is facing away from the camera (i.e. the last component is positive).

At this point, we search for whole markers by simultaneously observing the rotation
matrices of a couple of ellipses. Specifically, for each pair Qk and Qw, we produce the
set of the four possible rotation pairs < = {(Ri

Qk
,Rj

Qw
); i, j = 1 . . . 2}. From this set,

we remove the pairs for which the inner product of the relative plane normals is below
a fixed threshold and average the remaining rotation pairs by means of quaternion mean.
Finally, we keep the best rotation average by choosing the one that minimize the difference
between the radii of Qk and Qw after being transformed by such rotation. The rationale
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is to avoid to choose ellipses with discordant orientations (as the marker is planar) and to
use a compatibility score that takes advantage of the fact that ellipses on the same ring
should be exactly the same size on the rectified plane.

Whenever a pair of dots Qk and Qw generate a good average rotation R(Qk,Qw), two
hypothesis on the ring geometry can be made (Fig. 3.2.b). Indeed, we expect the ring
shape being such that the following two properties holds. First, it should pass trough the
centers of Qk and Qw. Second, the ratio between the ring radius and the radii of Qk

and Qw, after being transformed trough R(Qk,Qw), should be exactly κ. Operatively, we
first fit the two circles C1, C2 passing trough the centers of RT

(Qk,Qw)QwR(Qk,Qw) and
RT

(Qk,Qw)QkR(Qk,Qw) and having radius κ r̂ where r̂ is the average radius of the two
transformed dots. Then, we transform C1 and C2 back through the inverse of R(Qk,Qw).

As soon as candidate rings are extracted, a circular grid made by sector and layers can
be generated directly on the image (Fig. 3.2.c). Of course, if the tag is composed by more
than one layer, we need to generate additional rings bot inward and outward. Then, for
each slot the presence or absence of a dot can be observed to produce a binary sequence
that will be analyzed in the decoding step to identify or discard the candidate marker.

To summarize, the detection step goal is to identify possible markers candidates by
searching groups of dots belonging to the same ring, expecting them arranged in an ellip-
tical shape. To do so, we avoid the direct estimation of ellipses in the image since it would
require an unfeasible effort. Diversely, we take advantage of the geometrical properties
of the dots and the known ratio κ to obtain two possible ring candidate for each pair of
ellipses. As result, only O(n2) operations are required.

Figure 3.3: The four possible camera orientations that transform an observed ellipse into
a circle
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Dealing with the uncalibrated case

The approach described so far assumed a calibrated camera setup. Indeed, all the rotation
matrices RQ were designed to transform conics lying on the normalized image plane
(hence requiring the focal length) around the camera optical center. It has to be noted,
however, that camera intrinsics are not an implied requirement of the tag itself but just
a powerful tool to dramatically speed-up the detection. As a consequence, we would be
satisfied to just guess a raw estimation of the focal length and principal point good enough
to still produce fair rotation matrices and sustain the detection procedure.

We decided to use the image center as our guess of the principal point. Even if it
appears a bold assumption, we observed that this holds for most cameras. Diversely, the
focal length is difficult to guess as it depends on the lens mounted. However, also in this
case we can take advantage on the geometric properties involved when observing a set of
coplanar circles.

In Section 3.1.1 we discussed how two feasible plane normals can be estimated from
each conic. It’s crucial to observe that, if we apply the same projective transformation
to two circles lying on the same plane, only one plane normal estimated from the first
circle will be parallel to a normal extracted from a second, whereas the other two will
diverge [35]. Furthermore, this property holds only for the correct focal length and optical
center and can be naturally expanded to multiple coplanar conics.

To better explain this behaviour, we extracted all orientations from a set of 3 coplanar

Figure 3.4: Estimated normals orientation in spherical coordinates of three coplanar el-
lipses spanning positive (Left) and negative (Right) focal length values. Note how one
of the two possible orientations converge to a common direction while the other does the
opposite.
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circles assuming to know the optical center and varying the focal length. In fig. 3.4
(Left) we plotted the values of such orientations in spherical coordinates spanning positive
values of f from almost zero to 5 times the known correct value. For the right plot
we did the same procedure but with negative values. In general, each ellipse produces
two different traces in (φ, θ)-plane as a function of the focal length. Since all correct
orientations have to be parallel to each other when the correct focal length is used, traces
that are relative to the correct orientation will converge to a same point as f get closer to
the expected value. On the other hand, all other traces will follow different paths and will
diverge to different directions. It’s clear form the plot that for positive values of the focal
length there is only one intersection point (in this example φ ' −0.76, θ ' 0.83). Also,
since the other possible intersection only happens when f becomes negative, the wrong
orientation will never be present in the set of feasible solutions.

This means that we can both estimate the correct focal length and extract sets of copla-
nar circles by solving a clustering problem among all the generated plane normals. How-
ever, there is no simple closed form solution to reverse the process and obtain the best
possible focal length that would have produced a given normal. Therefore, we restrict
our estimation to a discrete set of nf possible focal length values fi, i = 1 . . . nf equally
spaced inside the range fmin . . . fmax. At this point, for each dot Q detected in a scene and
for each fi, exactly two feasible plane normals N1

Qfi
, N2

Qfi
can be computed as described

in section 3.1.1. All such normals will exhibit two degrees of freedom and hence can be
easily parametrized in spherical coordinates with azimuth φ and elevation θ as vectors
in R2. Then, all these vectors are collected in a 2D accumulator whose bins are equally
divided into equal angular ranges.

Once the accumulator is completely filled with values extracted from all the dots,
local maxima with respect of the cardinality of the bins will represent clusters of normals
oriented almost in the same direction1. Finally, once a maxima is selected, we take the
median focal length of all the candidates contained in a bin as our sought focal length
estimate. Moreover, the candidates contained in a winning bin are all coplanar and thus
the dots search phase can be restricted on such set.

An example of the proposed focal length estimation method is given in Fig. 3.5. We
started by rendering a synthetic image of a RUNE-149 tag trough a virtual camera of
known focal length fvc = 1000 px and with principal point being exactly the center of
the image (First row of Fig. 3.5). In the middle of the figure, we plotted the accumu-
lator values projected on the front and back side of a hemisphere. As expected, a clear
accumulation of votes can be observed in the bin containing the combination of φ, θ cor-
responding to the normal of the plane on which the tag lie. On the right, we plotted the
distribution of the focal length candidates of the winning bin, highlighting a clear maxi-
mum around the correct value of fvc. Conversely, we repeated the same test with two tags
on the same image lying into two different planes (Second row of Fig. 3.5). This time,
the accumulator shows two clear maxima corresponding to the plane normals of the two
planes. Again, on the right side of the figure we plotted the distribution of the focal length

1more precisely, the variability inside the bin depends on the bin size itself



3.1. An Accurate and Robust Artificial Marker based on Cyclic Codes 25

Figure 3.5: A synthetic representation of the marker dots normal voting scheme used

to guess an initial value of the camera focal length. Left: RUNE-129 markers rendered

by a virtual camera with known focal length and principal point. Center: the normal

accumulator in spherical coordinates. Right: Focal length distribution of the bins. See the

text for a complete discussion on the voting procedure.

candidates for the two winning bins. Two important observations can be made. First,

both the two distributions show two clear maxima around fvc, demonstrating that a focal

length guess is the same regardless of the tag orientation. Second, the more a tag is angled

the more the guess is near the expected value. This can be explained by noting that a tag

perfectly parallel to the imaging plane has all the dots exactly appearing as circles and so

no focal length can be recovered. Therefore, the correct focal length is better constrained

when the eccentricity of the dots is low. In fact, from the accumulator can be noted that

the maximum corresponding to the angled tag is far more sharp than the other.

Even if the focal length guess is somehow biased by the angle of the observed tag,

we feel that this won’t be a show-stopper as we can still obtain a focal length guess good

enough to let the detection procedure work properly. To convince the reader furthermore,

we recall that the focal length is used to obtain a good rotation matrix to transform all the

dots into circles. The more the angle is low, the more the focal length become irrelevant

to recover that rotation. In the extreme case, to detect a perfectly parallel tag the focal

length is not necessary at all since all the dots (and so the whole tag) already appear as

circles.

To conclude, in the uncalibrated case we require an initial camera intrinsic parameters

guessing step able to produce values good enough to perform a subsequent tag detection.

To do so, we guess the principal point as the image center and the focal length with a

voting procedure among a discretized set of plausible focal length values.
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Marker Recognition and Coding Strategies

Once a candidate marker has been detected, dots distribution among the slots produces a
sequence of symbols that can be subsequently used to identify each tag. However, two
coupled problems raise. First, we don’t have a starting position of the symbols sequence
since the detection step can only identify each candidate up to a rotation around the normal
of the plane2. Consequently, any cyclic shift of the sequence is equally possible and must
be recovered. Second, some dots may be missing or assigned to wrong slots thus requiring
the identification procedure being somehow robust to this situations.

We decided to cast the problem into the solid mathematical framework of coding the-
ory. Specifically, dot patterns of the tags corresponds to codes generated with specific
properties and error-correcting capabilities. In section 3.1.1 we briefly discuss the math-
ematical theory involved in the generation of the codes while in section 3.1.1 we give a
closed form solution to decode each code block in case of erasures and errors. We refer
the reader to [147] for a in-depth investigation of the field.

Code generation

We start by defining a block code of length n over a set of symbols S as the set C ⊂ Sn.
The elements of C are called codewords.

Let q = pk ∈ N be a power of a prime number p and an integer k > 1. We denote with
Fq the finite field with q elements. A linear code C is a k−dimensional vector sub-space
of (Fq)n where the symbols are taken over the field Fq. A linear code is called cyclic if
any cyclic shift of a codeword is still a codeword, i.e.

(c0, . . . , cn−1) ∈ C ⇒ (cn−1, c0, . . . , cn−2) ∈ C
If we consider the field Fq[x]/(xn− 1) obtained by the polynomial ring Fq[x] modulo

division by xn − 1, there exists a bijection to the vectors in (Fq)n:

(v0, . . . , vn−1)⇔ v0 + v1x+ . . .+ vn−1x
n−1

Furthermore, C is a cyclic code if and only if C is an ideal of the quotient group of
Fq[x]/(xn − 1). This means that all cyclic codes in polynomial form are multiples of a
monic generator polynomial g(x) of degree m < n which divides xn − 1 in Fq[x]. Since
multiplying a polynomial form of a code by x modulo xn−1 corresponds to a cyclic shift

x(v0 + v1x+ . . .+ vn−1x
n−1) mod (xn − 1) =

vn−1 + v0x+ . . .+ vn−2x
n−2

all codewords can be obtained by mapping any polynomial p(x) ∈ Fq[x] of degree
almost n−m− 1 into p(x)g(x) mod (xn − 1).

2Note that, conversely, the verse of the sequence is induced by the counter-clockwise ordering of the
sectors that is preserved since we always observe the frontal face of the marker plane.
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Since all the cyclic shift are codes, we can group the codewords into cyclic equiv-
alence classes such that two codewords are in the same class if and only if one can be
obtained as a cyclic shift of the other. Since the number of elements in a cyclic equiva-
lence class divides n, by choosing an n prime we only have classes either composed by a
single element (constant codewords with n repetitions of the same symbol) or where all
codewords are distinct. The first can be easily eliminated since it involves in at most q
codewords.

In our marker setting, the identity of the marker is encoded by the cyclic equivalence
class while the actual alignment of the circles (i.e. its rotation around the plane normal)
can be obtained from the detected element within the class. Using coding theory enables
us to balance the trade-off between the number of errors that can be handled with respect
to the number of possible valid tags (i.e. the number of equivalence classes) granted. To
our knowledge, is the first fiducial marker system that provides such feature at a geomet-
rical level, modifying its shape to accommodate different requirements.

The Hamming distance dH : S×S → N is the number of symbols that differ between
two codewords. Similarly, the Hamming distance of a code C is the minimum distance
between all the codewords: dH(C) = minu,v∈C dH(u, v). The Hamming distance plays
a crucial role on the number of errors that can be detected and corrected. Indeed, a code
with a Hamming distance d can detect d−1 errors and correct b(d−1)/2c erasures. When
we consider a linear code of length n and dimension k, the singleton bound d ≤ n−k−1
holds. Thus, with a fixed code length n the error correcting codes capabilities are traded
with a smallest number of available codewords. In our setting we restrict our analysis to
the correction of random errors or erasures but the same mathematical framework can be
used to improve the detection resilience while correcting burst errors (i.e. errors that are
spatially coherent, like we have in case of occlusions).

For the proposed RUNE-Tags, we experiment on two specific codes instances. In the
first one (RUNE-43) we encode the single-layer circular pattern as a vector in (Z2)43,
where Z2 is the remainder class modulo 2. The number 43 for the radial elements was
chosen because it is a prime that leads to radial sectors of a reasonable size (slightly less
than 10o), but any cyclic code of prime length would work. The polynomial x43 − 1
factors into 4 prime polynomial in Z2, namely x− 1 and three polynomials of degree 14.
By excluding x−1 which generates only constant codes, and one of the prime polynomial
of degree 14, we obtain a generator polynomial resulting in a cyclic code of dimension
15, with 762 different markers (equivalence classes) and a minimum Hamming distance
of 13, allowing us to correct up to 6 errors. In particular, we used the polynomial (3.3)
where the terms in brackets are two of the three degree 14 prime polynomials dividing
x43 − 1.

g(x) = (1 + x2 + x4 + x7 + x10 + x12 + x14)

(1 + x+ x3 + x7 + x11 + x13 + x14) (3.3)

In the second (RUNE-129) we have 8 different patterns (since it is a 3-layer tag) in
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a sequence of 43 sectors. We hold out the pattern with no dots to detect erasures due to
occlusions and we encode the remaining 7 patterns as vectors in Z7. For the whole target,
the code is represented as vectors in (Z7)43 using the generator polynomial (3.4).

g(x) = (1 + 4x+ x2 + 6x3 + x4 + 4x5 + x6)

(1 + 4x2 + 6x3 + 4x4 + x6)(1 + x+ 3x2 + 5x3 + 3x4 + x5 + x6)

(1 + 5x+ 5x2 + 5x4 + 5x5 + x6)(1 + 6x+ 2x3 + 6x5 + x6)

(1 + 6x+ 4x2 + 3x3 + 4x4 + 6x5 + x6) (3.4)

Again, this polynomial is produced excluding one prime factor of x43−1. In particular,
in Z7, x43 − 1 factors into the usual x − 1 and 7 prime polynomials of degree 6. By
excluding x − 1 and one of the degree 6 factors we obtain a cyclic code of dimension 7,
giving 19152 different markers with a minimum Hamming distance of 30, and allowing
us to correct up to 14 errors, or 29 erasure, or any combination of t errors and e erasures
such that 2t + e ≤ 29. Unlike the case for (RUNE-43) where any choice of the prime
factor to exclude leads to equivalent codes, here the choice of the prime factor to exclude
was dictated by the need to have a generalized BCH code for fast decoding, as it will be
explained in the next Section. Of the 6 prime polynomials, only 2 produced a BCH code
correcting 14 errors, while the others had smaller correction capabilities through BCH
decoding.

Decoding

The recognition of a tag is divided into two main stages: First the observed code sequence
is decoded, i.e., we find the valid codewords that is closest to the observed sequence.
Second, we align the codeword, extracting a unique representative of the cyclic class and
the relative cyclic shift of the decoded codeword.

Given the relative high correction capabilities of the Codes, for the first stage we opted
for an algebraic syndrome-based decoding.

Let g(x) be the generator polynomial, and w(x) = a(x)g(x) a codeword. Given an
observed sequence v(x) = w(x) + e(x) where e(x) is the error, the goal of the decoding
process is to recover the error e(x) and consequently, the codeword w(x) and the code
a(x).

Let Fqm be an extension of Fq that splits xn−1 into n linear terms xn−1 =
∏n

i=1(x−
ai) where ai ∈ Fqm are n-th roots of unity. Further, let α ∈ Fqm be a primitive n-th root
of unity, i.e., αn = 1 and αk 6= 1 for all k < n, then all the roots ai of xn − 1 are of the
form αj with j ∈ {0, . . . , n − 1}. Since the generator polynomial g(x) divides xn − 1,
some of these divide g(x). Let

D = {i ∈ 0, . . . , (n− 1) | g(αi) = 0} (3.5)
N = {i ∈ 0, . . . , (n− 1) | g(αi) 6= 0} (3.6)
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be the set of powers i for which αi is and is not a root of g(x), clearly, given correct
codeword w(x) we have

∀i ∈ D, w(αi) = a(αi)g(αi) = 0 . (3.7)

We define the syndrome (S1, . . . , Sn) of an observed sequence v(x) as

Si = v(αi) (3.8)

we want to connect the values of the syndromes Si, i ∈ D with the (correctable) error
e(x).

Let i1, . . . , iw be the indices of the non-zero digits in the error sequence e(x), where
w ≤ t is the number of errors, t being the maximum number of errors correctable by the
code. We define the error locator polynomial as

Λ(x) =
w∏
j=1

(
1− αijx

)
= 1 +

w∑
j=1

λjx
j (3.9)

with λj ∈ Fqm . With the error locator at hand, we can locate the error digits by finding
the powers of α that are roots of λ(x), in fact λ(α−i) = 0 if and only if the i-th digit of v
is wrong.

The Newton equations link the coefficients λi, i = 0, . . . , (n− 1) of the locator poly-
nomial with the syndromes Sj, j = 0, . . . , (n− 1) of the error e(x):{

Si +
∑i−1

j=1 λjSi−j + iλi = 0, i ≤ t

Si +
∑w

j=1 λwS[i−j]n = 0, t < i ≤ n+ t ,
(3.10)

where [x]n is the remainder of the division of x by n.
note that of every index i ∈ D the syndrome Si of e(x) is equal to the same-index

syndrome of the observed sequance v(x), in fact:

∀i ∈ D, v(αi) = a(αi)g(αi) + e(αi) = e(αi) , (3.11)

while for the indices in N the syndromes of e(x) are unknown. Although there are ap-
proaches to solve the Newton equation in the general case [168], the most efficient algo-
rithms are for special codes where there are sufficient equations in (3.10) that only use
known syndromes to solve the system of linear equations in Fqm .

A cyclic code is generalized BCH correcting t errors if there are 2t consecutive pow-
ers of α (αc, . . . , αc+2t−1) that are roots of g(x). In this case we have exactly t of the
Newton equations making use only of the known syndromes, i.e., the syndromes com-
puted on those powers of α, thus we can solve (3.10) using those equations. In particular,
the error locator as well as the actual error can be efficiently computed using Forney’s
algorithm [94]. Let S(x) = Sc + Sc+1x+ · · ·+ Sc+2t−1x2t− 1 be the reduced syndrome
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polynomial, there are two unique polynomials Λ(x) and Ω(x) in Fqm [x] with degree less
than or equal to t for which

Ω(x) = S(x)Λ(x) mod x2t . (3.12)

We call Ω(x) the error evaluator polynomial, while Λ(x) is the error locator polynomial
(3.9). These polynomials can be computed efficiently noting that (3.12) can be re-written
as

Λ(x)S(x) + f(x)x2t = Ω(x) . (3.13)

Hence, Ω(x) is the gcd between S(x) and xt, and both Λ(x) and Ω(x) can be computed
using the (generalized) Euclidean algorithm.

Once the locations of the errors are computed finding the roots of Λ(x) among the
powers of α, the error values are computed as follows:

ej = −α
−(c−1)jΩ(α−j)

Λ′(α−j)
, (3.14)

where Λ′(x) =
∑2t−1

i=1 iλix
i−1 is the formal derivative of Λ(x).

In the case of the presence of e erasures, a BCH code can correct up to t′ = t− de/2e
errors. First we set the erased digits to 0, and then we consider the error/erasure locator
polynomial Γ(x) = Λ(x)E(x) where E(x) is the erasure locator polynomial

E(x) =
e∏
j=1

(
1− αijx

)
. (3.15)

In this context i1, . . . , ie are the indices of the e erasures.
With the error/erasure locator polynomial at hand, we re-write (3.12) as

Ω(x) = S(x)Γ(x) mod x2t

= S(x)E(x)Λ(x) mod x2t , (3.16)

with S(x) and E(x) known, and Ω(x) and Γ(x) of degree less than or equal to t′ + e. As
before, we use the Euclidean algorithm to compute Ω(x) and Λ(x). Then, the roots of
Γ(x) will give us the locations of the errors, and their values are computed as follows:

ej = −α
−(c−1)jΩ(α−j)

Γ′(α−j)
. (3.17)

It is easy to show that (RUNE-129) is a generalized BCH code correcting 14 errors,
since α = x5 + 4x4 + 5x2 + 6x defined over Z7/(x

6 + 6x5 + 2x3 + 6x + 1) ' F76 is
a primitive 43-th root of unity, and the 28 consecutive powers α8 . . . α35 are all roots of
(3.4). This means that through Forney’s algorithm we can decode t errors and e erasures
up to 2t+ e ≤ 28, thus quite close to the code’s limit.
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Figure 3.6: Evaluation of the accuracy in the camera pose estimation with respect to
different scene conditions. Examples of the detected features are shown for RUNE-129
(first image column) and ARToolkitPlus (second image column).

In the case of (RUNE-43), the code cannot be reduced to a generalized BCH, however,
α = x7 + x5 + x4 + x2 + x + 1 defined over Z2/(x

14 + x12 + x11 + x10 + x9 + x8 +
x4 + x3 + 1) ' F214 is a primitive 43-th root of unity, and has 3 ranges of 6 consecutive
powers that are roots of (3.3), namely α1 . . . α6, α19 . . . α24, and α37 . . . α42. Limiting
the correction capabilities to 5 errors, we have 8 Newton equations using only known
syndromes. Consequently, we can solve the system of linear equations in F214 to find the
error locator polynomial and, thus, the error locations. Since the code is binary, the error
values are all 1 and we only need to flip the codes at the error locations. Note that we can
detect whether the sequence has more than 5 errors by the fact that the locator polynomial
has roots that are neither 0 nor powers of α, leaving us with a margin around the decision
boundary of the codewords where we detect but cannot correct the error. This is not a
major problem in our application where it is arguably safer to ignore a tag with enough
errors to be adjacent to the decision boundary.
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Code Alignment

The alignment of the code is performed through an integer Fourier Transform. Let k be an
integer such that r = kn+1 is prime, and let α be a primitive element of the multiplicative
group Zr×, i.e., α 6= 0 and αi 6= 1 for all i < r − 1. Under these assumptions αk has a
prime period n. Assume also that for the given k, α combination αk > q. In our cases
with n = 43 we have k = 4, r = 4 · 43 + 1 = 173 prime, and 2 a primitive element of
Z173. Further 24 = 16 > 7 > 2.

Given a codeword sequence c0, . . . , cn−1 of integers between 0 and q − 1, we define
the Fourier transform in Zr of this sequence as

Ci =
n−1∑
j=0

αkijcj mod r . (3.18)

We define the phase of a Fourier coefficient Ci as φi = logα(Ci), i.e., the unique
integer 0 ≤ φi ≤ r − 2 such that αφi = Ci mod r. With this definition we compute the
shift of the code as l = bφ1/kc and the Fourier Transform of the aligned code as

Ĉi = α−kliCi mod r . (3.19)

Note that for constant codewords, C1 = · · · = Cn−1 = 0 so the shift is not well defined,
while in all other cases we have C1 6= 0. Also, under this rotation 0 ≤ logα(Ĉ1) < k,
thus we are minimizing the phase of Ĉ1. Once the aligned Fourier Transform is at hand,
we can compute the aligned codeword sequence ĉ0, . . . , ĉn−1 using the inverse Fourier
Transform in Zr:

ĉi = n−1

n−1∑
j=0

α−kijĈj mod r . (3.20)

3.1.2 Experimental Validation
We tested our proposed fiducial markers in many different ways. To start, in section 3.1.2
and 3.1.2 we assessed the pose estimation accuracy compared to the ARToolkit [123] and
ARToolkitPlus [227] which are deemed as a de-facto standard markers for augmented
reality applications. Such tests are performed synthetically by rendering different frames
varying an additive Gaussian noise, blur, illumination gradient and random occlusions.

Furthermore, driven by the good localization accuracy and occlusion resilience of the
composing circular features, we tested RUNE-Tags as targets for camera calibration and
object measurement. In section 3.1.2 we simulated a mono camera calibration scenario
while in 3.1.2 we compared the camera pose estimation for both the mono and the stereo
case. Also, we assessed the repeatability achievable while estimating the distance between
two joint tags moving in a scene.

Finally, in addition to the evaluation with synthetic images, in section 3.1.2 we per-
formed some qualitative tests on real videos.
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Accuracy and Baseline Comparisons

In Fig. 3.6 the accuracy of our markers with calibrated cameras is evaluated. In the first
test, an additive Gaussian noise was added to images with an average view angle of 0.3
radians and no artificial blur added. The performance of all methods get worse with
increasing levels of noise and ARToolkitPlus, while in general more accurate than AR-
Toolkit, breaks when dealing with a noise with a std. dev. greater than 80 (pixel intensities
goes from 0 to 255). Both RUNE-43 and RUNE-129 always recover a more faithful pose.
We think that this is mainly due to the larger number of correspondences used to solve
the PnP problem. In fact, we can observe that in all the experiments RUNE-129 performs
consistently better than RUNE-43.

Unlike additive noise, Gaussian blur seems to have a more limited effect on all the
techniques. This is mainly related to the fact that all of them performs a preliminary edge
detection step, which in turn applies a convolution kernel. Thus is somewhat expected
that an additional blur does not affect severely the marker localization. Finally, it is in-
teresting to note that oblique angles lead to an higher accuracy (as long as the markers
are still recognizable). This is explained by observing that the constraint of the reprojec-
tion increases with the angle of view. Overall, these experiments confirm that Rune-Tag
always outperforms the other two tested techniques by about one order of magnitude. In
practical terms the improvement is not negligible, in fact an error as low as 10−3 radians
still produces a jitter of 1 millimeter when projected over a distance of 1 meter. While this
is a reasonable performance for augmented reality applications, it can be unacceptable for
obtaining precise contactless measures.

RUNE Tags for camera calibration

Since RUNE-129 provides an extremely robust yet precise way to localize many circu-
lar features we tried to use the proposed markers as a calibration target. In most cases,
camera calibration is performed by exposing a well known pattern to the camera in many
different point of views. This allows the gathering of many 3D-2D point correspondences
used to simultaneously recover the target pose, camera intrinsics parameters, and the lens
distortion. Most of the time, a chessboard pattern is used since it provides a good set
of feature points in the form of image corners. However, a manual chessboard bound-
ary identification process is required for the limited robustness of such patterns against
occlusions or illumination gradients. As a consequence, our fiducial markers may pro-
vide a very interesting alternative when an automatic calibration procedure is sought or
an optimal visibility of the target cannot be guaranteed.

In Fig.3.7 we show the calibration results while calibrating a camera using a single
RUNE-129 as calibration target and by varying the number of exposures used for each
calibration. Specifically, we divided the camera poses (as given by PnP) into 3 major
groups with respect to the angle between the camera z-axis and the marker plane normal.
For each group, more than 200 photos are taken and a random subset of them are selected
for each test to compose the plot. The ground truth is provided by a calibration performed
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Figure 3.7: Accuracy of camera calibration when using a single RUNE-129 as a dot-

based calibration target. Camera poses has been divided into 3 groups based on the max-

imum angle between the camera z-axis and the marker plane. A random subset of photos

is used to test the calibration varying the number of target exposures. In all the experi-

ments we achieve a good accuracy with a decreasing st.dev. when increasing the number

of photos.
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Figure 3.8: Comparison between a calibration performed with RUNETag and chessboard

target

with a 20×20 chessboard target exposed in 200 different poses using the method described

in [20] to limit the errors due to printing misalignments. Camera calibration is performed

by using the common technique described in [251] implemented by the OpenCV library

[43].

Some interesting facts can be observed. First, the standard deviation of all the es-

timated parameters decrease by increasing the number of photos. This is an expected

behaviour that agrees with the accuracy experiments presented in section 3.1.2. Indeed,

the more the number of target feature points given, the more the calibration error can be

reduced by the non-linear optimization process. Second, the focal length estimation tends

to be more accurate while considering the target poses spanning trough a greater range
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of angles (i.e. between 0 and 60 degrees). Differently, optical center seems to behave
in the opposite way, giving better results when keeping the target plane more parallel to
the image plane. This is probably due to the well known localization bias of the ellipse
centers [150]. Third, the first two radial distortion parameters (i.e. k1 and k2) behave
respectively like the optical center and the focal length. It has to be noted that a pre-
cise localization of the ellipse centers is only achievable in absence of distortion since
the projective invariance of conics holds only for pure central projections. Therefore, we
think that the calibration performance can be improved by estimating an initial calibration
assuming no radial distortion followed by an iterative undistortion and re-localization of
the circular features and a re-calibration of the camera intrinsics. Finally, we obtained no
completely wrong calibrations due to mis-detections of the target thanks to the extremely
resilient coding scheme used for markers identification.

In Fig.3.8 we compared the recovered camera instrinsic parameters varying the num-
ber of shots for RuneTag and a standard 10x10 Chessboard calibration target, calibrated
with the method described in [251]. Both the two approaches shows comparable results,
with the standard deviation decreasing while increasing the number of target exposures.
Overall, chessboard target provides more stable results for optical center while RuneTag
target performs better in the focal length estimation. This may be caused by the radial
structure of RuneTag target that may partially hinder the optical center estimation.

Mono vs. Stereo Pose Estimation

To further test the camera pose estimation accuracy we compared the results achievable
comparing a single camera setup (using PnP algorithm) with a calibrated stereo setup
that can recover the pose by means of a 3D reconstruction of the marker followed by an
estimation of the rigid motion with respect to the known model.

Figure 3.9: Comparison between the pose accuracy for a single or stereo camera setup.
Left: distance between two jointly moving markers as a function of the angle with respect
to the first camera. Right: Angle around the marker plane normal as estimated by the first
camera versus the stereo setup. Ideally, all the measures should lie on the 45 degrees red
line.
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Figure 3.10: Real-world reconstruction scenario. ArUco and RUNETag were placed on

top of a scanner turntable to provide the initial coarse estimation for rangemap alignment.

See text for details.

We started by calibrating a stereo rig using a marker-based target as described in

section 3.1.2. Then, we firmly positioned two RUNE-129 tags to a rigid metal rod so that

they could only be moved without changing their relative position.

In the first experiment (Fig. 3.9, Left) we plotted the unknown distance between the

two markers as estimated only by the first camera (in red), by the second (in green) and by

using stereo reconstruction (blue) as a function of the angle between the first marker and

the first camera. It can be noted that the stereo case exhibit lower variance with respect

to single-camera scenarios with some sparse outliers happening when the entire marker is

not visible by both the cameras. Moreover, the distance measured by the mono case tends

to be a little lower than the stereo one if the angle is below 30 degrees while increasing

significantly for higher angles. This behaviour is probably due to the PnP algorithm that

suffers for a non-isotropic error with respect to the three camera axis (i.e. the localization

error on the camera z-axis is higher than the other two).

In (Fig. 3.9, Right) we compared the angle around the plane normal of a single RUNE-

129 tag for mono (using the first camera) versus the stereo case. Ideally, the ratio between

the two measures should be exactly 1 and so all the points should be disposed on the 45
degrees red line shown in the plot. We can observe that most of the measures are equally

distributed above and below such line indicating no significant bias. This behaviour is

consistent for all the angles spanning between 10 and 60 degrees since the overall geo-

metrical shape of all the dots (i.e. minor and major axis length) remains constant if a

rotation around the marker plane normal is applied. This suggests that the proposed tags

may be used as a coarse registration initialization for a 3D scanner turntable.

We tested this possible real-world scenario to compare our proposed tags against the

recently developed ArUco Tags [96] which exhibit similar reliability under heavy occlu-

sions. In (Fig. 3.10, Top-Right) we show two pictures of our setup, with a test object

placed on top of one of the two kind of tags covering the entire turntable. To test the
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Occlusion 0% 10% 20% 50% 70%

RUNE-43 100% 69% 40% 0% 0%
RUNE-129 100% 100% 100% 100% 67%

Table 3.2: Recognition rate of the two proposed marker configurations with respect to the
percentage of area occluded.

rangemap registration accuracy, we took 10 ranges spanning a complete 360 turn of the
turntable. Then, for each couple of ranges, pose recovered with each tag was used to
provide an initial coarse alignment which has been further refined with ICP. In (Fig. 3.10,
Left) we plotted the distance between the initial coarse and the refined configuration of
each range couple, in terms of root mean square distance of corresponding rangemap
points. The rationale is that the worse the pose provided by the tag, the more ICP has to
move each range for the fine alignment. In the plot we can clearly see how RuneTag pro-
vides lower RMS (so less ICP displacement was necessary) at any initial relative rotation.
For both the tags, the initial relative rotation proportionally affects the pose estimation
error. Finally, in (Fig. 3.10, Bottom-Right) we show a qualitative example of the coarse
estimation provided by ArUco (Left) and RuneTag (Right).

Resilience to Occlusion and Illumination

One of the main characteristics of Rune-Tag is that it is very robust to occlusion. In sec-
tion 3.1.1 we observed that RUNE-129 can be used to distinguish between about 20.000
different tags and still be robust to occlusions as large as about 67% of the dots. By choos-
ing different cyclic coding schemes is even possible to push this robustness even further,
at the price of a lower number of available tags. In the first column of Fig. 3.11 we show
how occlusion affects the accuracy of the pose estimation (i.e. how well the pose is esti-
mated with fewer dots regardless to the ability of recognize the marker). Albeit a linear
decreasing of the accuracy with respect to the occlusion can be observed, the precision is
still quite reasonable also when most of the dots are not visible.

In Table 3.2 we show the recognition rate of the two proposed designs with respect to
the percentage of marker area occluded. In the second column of Fig. 3.11 the robustness
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Figure 3.11: Evaluation of the accuracy in the camera pose estimation of RUNE-Tag with
respect to occlusion (left column) and illumination gradient (right column).
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Figure 3.12: Evaluation of the recognition time respectively when adding artificial false
ellipses in the scene (left column) and with several markers (right column).

to illumination gradient is examined. The gradient itself is measured unit per pixel (i.e.
quantity to add to each pixel value for a each pixel of distance from the image center).
Overall, the proposed methods are not affected very much by the illumination gradient
and break only when it become very large (in our setup an illumination gradient of 1
implies that pixels are completely saturated at 255 pixels from the image center). This
agrees with the fact that a precise sub-pixel ellipse contour estimation is quite robust to
steep changes in scene illumination.

Performance Evaluation

Our tag system is designed for improved accuracy and robustness rather than for high
detection speed. This is quite apparent in Fig. 3.12, where we can see that the recognition
could require from a minimum of about 15 ms (RUNE-43 with one tag an no noise) to
a maximum of about 180 ms (RUNE-129 with 10 tags) with a consumer Core2 Duo PC,
2Ghz clock. By comparison ARToolkitPlus is about an order of magnitude faster [227].
However, it should be noted that, despite being slower, the frame rates reachable by Rune-
Tag (from 60 to about 10 fps) can still be deemed as usable even for real-time applications
(in particular when few markers are viewed at the same time).

(a) (b) (c) (d)

Figure 3.13: Some examples of behaviour in real videos with occlusion. In (a) and (b)
an object is placed inside the marker and the setup is rotated. In (c) and (d) the pose is
recovered after medium and severe occlusion.
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Figure 3.14: Recognition fails when the marker is angled and far away from the camera
and the ellipses blends together.

Shortcomings and Limitations

In Fig. 3.13 some experiments with common occlusion scenarios are presented. In the
first two shots an object is placed inside a RUNE-43 marker in a typical setup used for
image-based shape reconstruction. In the following two frames a RUNE-129 marker is
tested for its robustness to moderate and severe occlusion. At last, in Fig. 3.14 an inherent
shortcoming of our design is highlighted. The high density exhibited by the more packed
markers may result in a failure of the ellipse detector whereas the tag is far away from the
camera or very angled, causing the dots to become too small or blended.
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3.2 A Robust Multi-Camera 3D Ellipse Fitting
Ellipses are a widely used cue in many 2D and 3D object recognition pipelines. In fact,
they exhibit a number of useful properties. First, they are naturally occurring in many
man-made objects. Second, the projective invariance of the class of ellipses makes them
detectable even without any knowledge of the acquisition parameters. Finally, they can be
represented by a compact set of parameters that can be easily adopted within optimization
tasks. While a large body of work exists in the literature about the localization of ellipses
as 2D entities in images, less effort has been put in the direct localization of ellipses
in 3D, exploiting images coming from a known camera network. We propose a novel
technique for fitting elliptical shapes in 3D space, by performing an initial 2D guess on
each image followed by a multi-camera optimization refining a 3D ellipse simultaneously
on all the calibrated views. The proposed method is validated both with synthetic data
and by measuring real objects captured by a specially crafted imaging head. Finally, to
evaluate the feasibility of the approach within real-time industrial scenarios, we tested the
performance of a GPU-based implementation of the algorithm.

3.2.1 Introduction
Among all the visual cues, ellipses offer several advantages that prompt their adoption
within many machine vision tasks. To begin with, the class of ellipses is invariant to
projective transformations, thus an elliptical shape remains so when it is captured from
any viewpoint by a pinhole camera [74]. This property makes easy to recognize objects
that contain ellipses [104, 152] or partially elliptical features [205]. When the parameters
of one or more coplanar 3D ellipses that originated the projection are known, the class
of homographies that make it orthonormal to the image plane can be retrieved. This
is a useful step for many tasks, such as the recognition of fiducial markers [34, 162],
orthonormalization of playfields [101], forensic analysis of organic stains [239] or any
other planar metric rectification [61]. Furthermore, ellipses (including circles) are regular
shapes that often appear in manufactured objects and can be used as optical landmarks for
tracking and manipulation [246] or measured for accurate in-line quality assurance [192].

Because of their usefulness and broad range of applicability, it is not surprising that el-
lipse detection and fitting methods abound in the literature. In particular, when points be-
longing to the ellipse are known, they are often fitted through ellipse-specific least square
methods [93]. In order to find co-elliptical points in images, traditional parameter-space
search schemas, such as RANSAC or Hough Transform, can be employed. Unfortunately,
the significantly high dimensionality of 2D ellipse parametrization (which counts 5 de-
grees of freedom) makes the direct application of those techniques not feasible. For this
reason a lot of efficient variants have appeared. Some try to reduce the number of samples
for a successful RANSAC selection [204,241]. Others attempt to escape from the curse of
dimensionality that plagues the Hough accumulator [64, 154]. If high accuracy is sought,
point-fitted ellipses can be used as an initial guess to be refined through intensity-based
methods. Those approaches allow to obtain a sub-pixel estimation by exploiting the raw
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Figure 3.15: Schematic representation of
a multi-camera system for industrial in-
line pipes inspection.

Figure 3.16: The experimental Multiple-
camera imaging head.

gradient of the image [170] or by preserving quantities such as intensity moments and
gradients [108]. Multiple view geometry has also been exploited to get a better 3D ellipse
estimation. In [220], multiple cameras are used to track an elliptical feature on a glove
to obtain the estimation of the hand pose. The ellipses fitted in the images are triangu-
lated with the algorithm proposed in [178] and the best pair is selected. In [149], holes
in metal plates and industrial components are captured by a couple of calibrated cam-
eras and the resulting conics are then used to reconstruct the hole in the Euclidean space.
Also in [85] the intersection of two independently extracted conics is obtained through a
closed form. All these approaches, however, exploit 3D constraints in an indirect manner,
as triangulation always happens on the basis of the ellipses fitted over 2D data.

In this work we present a rather different technique that works directly in 3D space.
Specifically, we adopt a parametric level-set appraoch, where the parameters of a single el-
liptical object that is observed by a calibrated network of multiple cameras (see Fig.3.15)
are optimized with respect to an energy function that simultaneously accounts for each
point of view. The goal of our method is to bind the 2D intensity and gradient-based en-
ergy maximization that happens within each image to a common 3D ellipse model. The
performance of the solution has been assessed through both synthetic experiment and by
applying it to a real world scenario. Finally, to make the approach feasible regardless of
the high computational requirements, we propose a GPU implementation which perfor-
mance has been compared with a well optimized CPU-based version.

3.2.2 Multiple Camera Ellipse Fitting

In our approach we are not seeking for independent optima over each image plane, as is
the case with most ellipse fitting methods. Rather, our search domain is the parametriza-
tion of an ellipse in the 3D Euclidean space, and the optimum is sought with respect to
its concurrent 2D reprojections over the captured images. In order to perform such opti-
mization we need to sort out a number of issues. The first problem is the definition of a
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3D ellipse parametrization that is well suitable for the task (that is, it makes easy to relate
the parameters with the 2D projections). The second one, is the definition of an energy
function that is robust and accounts for the usual cues for curve detection (namely the
magnitude and direction of the intensity gradient). The last issue is the computation of
the derivative of the energy function with respect to the 3D ellipse parameters to be able
to perform a gradient descent.

Parameterization of the 3D Ellipse

In its general case, any 2-dimensional ellipse in the image plane is defined by 5 parame-
ters, namely: the length of the two axes, the angle of rotation and a translation vector with
respect to the origin.

In matrix form it can be expressed by the locus of points x =
(
x1 x2 1

)T in homo-
geneous coordinates for which the equation xTAxT = 0 holds, for

A =

a b d
b c f
d f g

 (3.21)

with det(A) < 0 and ac− b2 > 0.
In the 3-dimensional case it is subjected to 3 more degrees of freedom (i.e. rotation
around two more axes and the z-component of the translation vector). More directly,
we can define the ellipse by first defining the plane T it resides on and then defining
the 2D equation of the ellipse on a parametrization of such plane. In particular, let c =
(c1, c2, c3, 1)T ∈ T be the origin of the parametrization, and u = (u1, u2, u3, 0)T , v =
(v1, v2, v3, 0)T be the generators of the linear subspace defining T , then each point on the
3D ellipse will be of the form o + αu + βv with α and β satisfying the equation of an
ellipse.

By setting the origin o to be at the center of the ellipse and selecting the directions u
and v appropriately, we can transform the equation of the ellipse on the plane coordinates
in such a way that it will take the form of the equation of a circle. Hence, allowing the
3D ellipse to be fully defined by the parametrization of the plane on which the ellipse
resides. However, this representation has still one more parameter than the actual degrees
of freedom of the ellipse. To solve this we can, without any loss of generality, set u3 = 0,
thus, by defining the matrix

Uc =


u1 v1 c1

u2 v2 c2

0 v3 c3

0 0 1

 (3.22)

and the vector x = (α, β, 1)T , we can express any point p in the 3D ellipse as:

p = Ucx subject to xT

1 0 0
0 1 0
0 0 −1

x = 0 . (3.23)
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Even if Uc embeds all the parameters needed to describe any 3d ellipse, it is often the
case that an explicit representation through center c and axes a1, a2 ∈ R3 is needed. Let
U be the 3×2 matrix composed by the first two columns of UC. The two axes a1, a2 can
be extracted as the two columns of the matrix:

K =

a1 a2

 = UφT

where φT is the matrix of left singular vectors of UTU computed via SVD decomposition.
The vector c is trivially composed by the parameters

(
c1 c2 c3

)T .
Conversely, from two axes a1, a2, the matrix U can be expressed as:

U = K

(
α −β
β α

)

by imposing that

{
αK31 + βK32 = 0

α2 + β2 = 1
. Finally, once U has been computed, the 3D

ellipse matrix can be composed in the following way:

Uc =

(
U c
0 1

)
Finally, with this parametrization it is very easy to obtain the equation of the ellipse pro-
jected onto any camera. Given a projection matrix P, the matrix AP describing the 2-
dimensional ellipse after the projection can be expressed as:

AP = (PUc)
−T

1 0 0
0 1 0
0 0 −1

 (PUc)
−1 (3.24)

Energy Function over the Image

To estimate the equation of the 3D-ellipse we set-up a level-set based optimization schema
that updates the ellipse matrix Uc by simultaneously taking into account its re-projection
in every camera of the network. The advantages of this approach are essentially threefold.
First, the equation of the 3D ellipse estimated and the re-projection in all cameras are
always consistent. Second, erroneous calibrations that affects the camera network itself
can be effectively attenuated, as shown in the experimental section. Third, the ellipse can
be partially occluded in one or more camera images without heavily hindering the fitting
accuracy.

In order to evolve the 3D ellipse geometry to fit the observation, we need to define the
level set functions ϕi : R2 → R describing the shape of the ellipse Uc re-projected to the
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ith camera. Given each level set, we cast the multiview fitting problem as the problem of
maximizing the energy function:

EI1...In(Uc) =
n∑
i=1

EIi(Uc) (3.25)

Which sums the energy contributions of each camera:

EIi(Uc) =

∫
R2

〈∇H(ϕ(x)),∇Ii(x)〉2dx (3.26)

=

∫
R2

〈H ′(ϕ(x))∇ϕ(x),∇Ii(x)〉2dx , (3.27)

where H is a suitable relaxation of the Heavyside function. In our implementation, we
used:

H(t) =
1

1 + e−
t
σ

(3.28)

where parameter σ models the band size (in pixels) of the ellipse region to be considered.
By varying σ we can manage the trade-off between the need of a regularization term in
the energy function to handle noise in the image gradient and the estimation precision that
has to be achieved.

The level set for a generic ellipse is rather complicated and cannot be easily expressed
in closed form, however, since it appears only within the Heavyside function and its
derivative, we only need to have a good analytic approximation in the boundary around
the ellipse. We approximate the level set in the boundary region as:

ϕi(x) ≈ xTAix

2
√

xTAi
T I0Aix

(3.29)

Where I0 =

1 0 0
0 1 0
0 0 0

 and Ai is the re-projection of the ellipse Uc into the ith camera

computed using equation (3.24). The function has negative values outside the boundaries
of the ellipse, positive values inside and is exactly 0 for each point {x|xTUcx = 0}.

The gradient of the level set function ∇ϕ : R2 → R2 can actually be defined exactly
in closed form:

∇ϕi(x) =
Aix√

xTAi
T I0Aix

(3.30)

.
Starting from an initial estimation, given by a simple triangulation of 2d-ellipses be-

tween just two cameras, we maximize the energy function (3.25) over the plane parame-
ters Uc by means of a gradient scheme.
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Figure 3.17: Evaluation of the accuracy of the proposed method with respect to different
noise sources. The metric adopted is the relative error between the minor axis of the
ground truth and of the fitted ellipse.

Gradient of the Energy Function

The gradient of the energy function can be computed as a summation of the gradient
of each energy term. This gradient can be obtained by analytically computing the partial
derivatives of equation (3.26) with respect to the eight parameters 
(p1 . . . p8) = (u1, v1, c1, u2, v2, c2, v3, c3):

∂

∂pi
EIi(Uc) =

∂

∂pi

∫
R2

EIi(Uc,x)2dx

=

∫
R2

2EIi(Uc,x)
∂

∂pi
EIi(Uc,x)dx

Where:
EIi(Uc,x) = 〈H ′(ϕ(x))∇ϕ(x),∇Ii(x)〉

and

∂

∂pi
EIi(Uc,x) =(

∂

∂pi
H ′(ϕ(x)))〈∇ϕ(x),∇Ii(x)〉+

+H ′(ϕ(x))〈( ∂

∂pi
∇ϕ(x)),∇Ii(x)〉 .
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The derivatives of the parametric level set functions can be computed analytically. At
the beginning of each iteration we compute the derivative of the projected ellipse matrices
Ai which are constant with respect to x:

∂

∂pi
Ai = T + TT (3.31)

where

T = (
∂

∂pi
[(PiUc)

−1])T

1 0 0
0 1 0
0 0 −1

 (PiUc)
−1 (3.32)

and
∂

∂pi
[(PiUc)

−1] = −(PiUc)
−1(Pi

∂

∂pi
Uc)(PiUc)

−1 . (3.33)

Then, using (3.31), we can compute the level set derivatives for each pixel:
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(3.34)

∂

∂pi
ϕ(x) =

1

2
〈x, ∂

∂pi
∇ϕ(x)〉 (3.35)

∂

∂pi
H ′(ϕ(x)) = H ′′(ϕ(x))

∂

∂pi
ϕ(x) . (3.36)

By summing the derivative ∂
∂pi
EIi(Uc,x) over all images and all pixels in the active

band in each image, we obtain the gradient G = ∇EI1...In(Uc). At this point, we update
the 3D ellipse matrix Uc through the gradient step

Uc
(t+1) = Uc

(t) + ηG (3.37)

where η is a constant step size.

3.2.3 Experimental evaluation
We evaluated the proposed approach both on a set of synthetic tests and on a real world
quality control task where we measure the diameter of a pipe with a calibrated multi-
camera setup. In both cases, lacking a similar 3D based optimization framework, we
compared the accuracy of our method with respect to the results obtained by triangulating
ellipses optimally fitted over the single images. The rationale of the synthetic experi-
ments is to be able to evaluate the accuracy of the measure with an exactly known ground
truth (which is very difficult to obtain on real objects with very high accuracy). Further,
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Figure 3.18: Examples of images with artificial noise added. Respectively additive Gaus-
sian noise and blur in the left image and occlusion in the right image. The red line shows
the fitted ellipse.

the synthetically generated imagery permits us to control the exact nature and amount of
noise, allowing for a separate and independent evaluation for each noise source. By con-
trast, the setup employing real cameras does not give an accurate control over the scene,
nevertheless it is fundamental to asses the ability of the approach to deal with the complex
set of distractors that arise from the imaging process (such as reflections, variable con-
trast, defects of the object, bad focusing and so on). In both cases the ellipse detection is
performed by extracting horizontal and vertical image gradients with an oriented deriva-
tive of Gaussian filter. Edge pixels are then found by non-maxima suppression and by
applying a very permissive threshold (no hysteresis is applied). The obtained edge pixels
are thus grouped into contiguos curves, which are in turn fitted to find ellipses candidates.
The candidate that exhibit the higher energy is selected and refined using [170]. The re-
fined ellipses are then triangulated using the two images that score the lower triangulation
error. The obtained 3D ellipse is finally used both as the result of the baseline method
(labeled as 2view in the following experiments) and as the initialization ellipse for our
refinement process (labeled as multiview). All the experiments have been performed with
3Mp images and the processing is done with a modern 3.2 Ghz Intel Core i7 PC equipped
with Windows 7 Operating System. The CPU implementation was written in C++ and
the GPU implementation uses the CUDA library. The video card used was based on the
Nvidia 670 chipset with 1344 CUDA cores.

Synthetic Experiments

For this set of experiments we chose to evaluate the effect of four different noise sources
over the optimization process. Specifically, we investigated the sensitivity of the approach
to errors on the estimation of the focal length and of the radial distortion parameters of
the camera and the influence of Gaussian noise and clutter corrupting the images. In
Fig. 3.18 examples of Gaussian noise and clutter are shown (note that these are details of
the images, in the experiments the ellipse was viewed in full). For each test we created 5
synthetic snapshots of a black disc as seen from 5 different cameras looking at the disk
from different points of view (see Fig. 3.15 and Fig. 3.16). The corruption by Gaussian
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noise has been produced by adding to each pixel a normal distributed additive error of
variable value of σ, followed by a blurring of the image with a Gaussian kernel with σ = 6.
The artificial clutter has been created by occluding the perimeter of the disc with a set of
random white circles until a given percentage of the original border was corrupted. This
simulates the effect of local imaging effect such as the presence of specular highlights
that severely affect the edge detection process. The focal length error was obtained by
changing the correct focal length of the central camera by a given percentage. Finally,
the distortion error was introduced by adding an increasing amount to the correct radial
distortion parameter K1.

In Fig. 3.17 we show the results obtained using the baseline triangulation and our
optimization with different values of the parameter σ used for the heavyside function
(respectively 3, 6 and 9 pixels). As expected, in all the tests performed the relative error
grows with the level of noise. In general, all the methods seem to be minimally sensitive to
Gaussian noise, whereas the clutter has a big effect even at low percentages. The baseline
method performs consistently worse and, among the multiview configurations, the one
with lower heavyside band appears to be the most robust for almost all noise levels. This
is probably due to the fact that the images have already been smoothed by the gradient
calculation step, and thus further smoothing is not required and, to some degree, leads to
a more prominent signal displacement.

Figure 3.19: Comparison between the accuracy of the initial 2D fitting and the proposed
3D optimization.
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Real World Application

For the experiments with real images we built an imaging device that hold 5 PointGrey
Flea3 3.2Mp Monochrome USB3 machine vision cameras (see Fig. 3.16). The 5 cameras
were calibrated for both intrinsic and extrinsic parameters. We used an aluminium pipe
for air conditioning system as the object to be measured, and the imaging head has been
supplemented with four high power LEDs in order to get an even illumination of the
rim. This is a typical scenario for in-line inspection in manufacturing lines. Additionally,
the smooth and polished surface of the pipe offers especially challenging conditions for
ellipse detection and refinement, since reflections and changes of contrast tend to create a
lot of false elliptical sectors and some highly structured noise.

If Fig. 3.19 a complete qualitative example of the refinement process is shown. In
the first two rows of the figure the reprojection of the initially estimated 3D ellipse is
overlayed to both the original images and the intensity-coded gradient magnitude. In the
remaining rows the reprojection of the optimized 3D ellipse is overlayed over the same
images. The images used for the initial triangulation in this specific case were the first
and the third. Specifically, the initial guess for the first image was a slightly off-center
ellipse fitted in between the edge response produced by the inner and outer rims of the pipe
opening (see the gradient image). As a matter of fact, it is immediate to note that these two
images exhibits the lower reprojection error, especially for the central camera. However,
the other reprojections are rather grossly misaligned with the remaining three points of
view. By contrast, almost all the misalignment has been corrected after performing the
3D refinement procedure. While some degree of displacement is still visible in some
images, we think that this is mainly due to miscalibration of the extrinsic parameters of
the imaging head.

We manually measured the internal and external diameter of the pipe with a caliper
(with ±0.1mm accuracy) obtaining respectively 13.9 and 16.1 mm. However, since the
optimization process aim to converge toward the middle of the two rims, it would make
no sense to evaluate directly the measurement error committed. Still, the standard de-
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viation of the data with respect to several subsequent measures of the same object from
slightly different angles can be considered a good indication of measurement error. In-
deed, even if the final measure can be affected by systematic errors, they can be estimated
and corrected a-posteriori. In Fig. 3.20 we plotted the measured length of the major axis
of the detected 3D ellipse for 60 repeated shots of the pipe opening. The improvement in
uncertainty reduction after the refinement step is clearly noticeable as the variance of the
measurements is strongly reduced. Indeed, the standard deviation went from 0.23 to 0.03.

All the refinements performed so far have been conducted using 5 points of view. In
order to complete our tests it would have been interesting to evaluate if similar accuracy
could be obtained using a smaller number of cameras. To this end we disabled two cam-
eras and took further 60 shots of the pipe. The results are plotted in Fig. 3.21. While
the dispersion of the measurements is a little higher using only three points of view, it is
still noticeably smaller than the one obtained without the optimization step (note that the
scales of Fig. 3.20 and Fig. 3.21 are different).

3.2.4 GPU-based Implementation
In a naive implementation, the optimization scheme proposed is quite intensive in terms
of raw computing power. Especially for the gradient computation, which requires sev-
eral matrix and vector multiplications that may easily sum up to an unacceptable total
computation time.

However, the intrinsic structure of the problem leads naturally to an implementation in
which every pixel in the area of interest defined by the Heavyside function are computed in
parallel. After this computation, that can be performed with no required synchronization
between each view, a reduction step is needed to aggregate all terms and obtain the final
value of the energy and gradient in each iteration.

We implemented the algorithm in C++ with no additional external libraries except for
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OpenCV for image IO, OpenMP for CPU parallelization and CUDA for GPU computing.
Both the CPU and GPU based implementations are essentially the same, except for the
fact that the latter can exploit the massive computing power of modern graphics cards.
For every algorithm’s iteration, a CPU-based function computes a list of pixel for each
image that will be affected by the computation. This list is generated by considering a
band around each 2d-ellipse reprojection with a thickness of 5σ pixels and is uploaded to
the device memory, together with the optimized parameters and the pre-computed image
gradient for each pixel in the list. Once the upload is completed, all available stream
processors are used to compute the energy and the energy gradient terms. At the end of
the computation steps, all threads are synchronized and 9 values are reduced (energy and
the 8 terms of the gradient) to obtain the final values. The total energy is used to track the
optimization status and trigger a termination criteria, the gradient is used to adjust the 3d
ellipse that is being optimized, moving toward a local maxima.

We tested the execution time per iteration for both the CPU and GPU based imple-
mentation of our algorithm (see Fig.3.22) with respect to the average number of pixel
processed. In both cases, the process is fast enough to handle a real-time optimization
in 3 megapixels images with the fitted ellipse spanning into about 50% of the image. As
expected, the GPU implementation performs better than the CPU and exhibits a more
consistent running time throughout the tests. This is probably due to the fact that we
are dealing with a dedicated hardware. Finally, the synchronization overhead caused by
the reductions decreases the performance gap between the two implementations when a
relatively low number of pixels are processed, which in turn becomes dramatic when an
optimization involving more than 105 pixels is needed.
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4
Model free camera calibration

Although a wide variety of model-based calibration techniques exist to approximate the
imaging system of almost all existing cameras and optics categories, they will eventually
lead to hard constrain the calibration result to the limits of the assumptions on which the
model bases itself. In [33] Bergamasco et al. show how their fully unconstrained model
outperform the standard calibration technique even for standard pinhole plus distortion
cameras.

Following their results we improved and applied their method in different situations:
In section 4.1 we exploit the unconstrined model to on-line calibrate the projector of
a structured-light low cost scanner. The outlier filtering strategy adopted allows us to
retain only the good rays observation and increase the scanned surface with respect to the
original camera pair, improving at the same time the triangulation accuracy; In section
4.2 we calibrate a light-field camera and use it to re-construct the capture surface with a
single shot . This is the ideal field of use of an unconstrained calibration technique since
the complex lens setup makes difficult the construction even of a specific model.

Finally, in section 4.3 we present a free distortion model. In this work we step back
from the fully unconstrained model and make the only assumption of having a central
camera. This allows us to take advantage of the whole set of tools provided by the pro-
jective geometry, while maintaining an higher calibration accuracy with respect to the
pinhole based calibration techniques.
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4.1 High-Coverage 3D Scanning through Online Struc-
tured Light Calibration

Many 3D scanning techniques rely on two or more well calibrated imaging cameras and a
structured light source. Within these setups the light source does not need any calibration.
In fact the shape of the target surface can be inferred by the cameras geometry alone,
while the structured light is only exploited to establish stereo correspondences. Unfor-
tunately, this approach requires each reconstructed point to exhibit an unobstructed line
of sight from three independent points of views. This requirement limits the amount of
scene points that can be effectively captured with each shot. To overcome this restriction,
several systems that combine a single camera with a calibrated projector have been pro-
posed. However, this type of calibration is more complex to be performed and its accuracy
is hindered by both the indirect measures involved and the lower precision of projector
optics.

In this section we propose a calibration method for structured light sources that com-
putes the projector parameters concurrently with regular scanning shots and does not re-
quire to adopt special procedures or targets as, for instance, in [27, 57, 128, 136]. In fact,
our approach is an online method that can be performed directly during the normal system
usage. Differently from other online methods [242] it is able to automatically recover the
scene scale and to deal even with severely distorted lens, increasing both surface coverage
and triangulation accuracy.

4.1.1 High-Coverage 3D Scanning

The main idea of our approach is to exploit the 3D points triangulated by two calibrated
cameras to get insight about the projector geometry. Basically, this happens by collecting
among subsequent shots the coordinates 3D points that reproject exactly over the same
projector pixel and then using a simple least square fitting to fix the parameters of the
projector ray associated to that pixel. In order to easily perform this step and to cope well
with commercial quality projector optics, we adopted the general unconstrained camera
model. In [33] the authors already studied a method for effectively calibrating such model
and now we are extending it to deal with this new application.

Unconstrained Camera Model

With the term unconstrained camera model we mean a completely free imaging model
where each pixel (i.e. imaging sensor for cameras or light emitter for projectors) is asso-
ciated to an independent ray. More formally, the ray associated with camera pixel i can
be written as ri = (di,pi), where di,pi ∈ IR3 represent direction and position of the
ray respectively. These vectors satisfy ||di|| = 1, (normalized direction) and dTi pi = 0
(orthogonal position vector). Any point x in the ray ri satisfies the parametric equation
x = dit+ pi for some t ∈ R.
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This kind of model comprises literally millions of free parameters, thus it is very
hard to calibrate with standard target-based approaches. In [33] we propose a practical
method to calibrate it. This is done by taking several shots of a computer monitor showing
both a vertical and horizontal phase shift pattern sequence [143]. These is exactly the
same type of phase shift coding that is used during the scanning process. The monitor
is placed in a total of s position, each one characterized by a pose

(
Θ
)
s

= (
(
R
)
s
, ts)

where
(
R
)
s

and ts are the rotation and translation of the monitor reference system with
respect to the camera world. Once the pattern sequences are decoded, for each pose of
the target monitor

(
Θ
)
s
, we are able to assign an observed code

(
Co
)

to each camera
pixel i that was inside the reprojection area of the monitor surface. After estimating the
poses

(
Θ
)
s

(see [33] for details), it is also possible to compute the expected code for each
pixel

(
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)

(ri|
(
Θ
)
s
) =
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P
)
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(ditint + pi) where
(
P
)
uv

denotes the projection onto

the (u, v) planar coordinates of the monitor reference frame, and tint = nTs (ts−pi)
nTs di

is the
intersecting parameter for the equation of ray ri, i.e., the value such that ditint + pi lies
on the monitor plane.

Under these premises, the best estimate for each ray ri = (di,pi) is the one that
minimizes the sum of the squared Mahalanobis lengths

∑
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εT of the residuals
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is the (conditional) error covariance matrix under the
given ray-pose combination:
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where φsi is the angle between the target and the monitor. Note that, with the pose pa-
rameters

(
Θ
)
s

at hand, these observed 2D coordinates can be transformed into 3D points
in the camera coordinate frame. We can divide the residual ε =

(
Ce
)
−
(
Co
)

into the

orthogonal vectors ε‖ =
(
Ce
)
−
(
Co
)‖ and ε⊥ =

(
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)‖ − (Co), where ε‖ is parallel to

r‖. Clearly, since ε⊥ is orthogonal to the plane spanned by d and n, the point in r closest
to
(
Co
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is the one closest to
(
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)‖. Further, let h be this point, we have
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)‖ ||2 + ||ε⊥||2 . (4.2)

It is easy to show that, ||h −
(
Co
)‖ || = cosφ||ε‖||, where φ is the angle between d

and n. Hence, the squared distance between r and
(
Co
)

equals

d2(r,
(
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)
) = cos2 φ||ε‖||2 + ||ε⊥||2 = εT

(
Σ
)−1

ε , (4.3)

thus the generalized least squares formulation with respect to the target coordinates cor-
responds to the standard linear least squares with respect to the 3D points associated with
each ray. The linear least squares problem is then solved by a ray with parametric equa-
tion x̄ + wt, where x̄ = 1

n

∑n
i=1 xi is the barycenter of the observed 3D points, and w is

the eigenvector of their covariance matrix corresponding to the smallest eigenvalue.
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Online Projector Calibration

Our goal is to calibrate the rays of the projector as if it was a camera that always re-
captures the exact pattern that is projected. This assumption, which is similar to many
other projector calibration methods, allows to implicitly know exactly the observed codes(
Co
)
. By contrast, the expected code

(
Ce
)

must be obtained from the scene. Most ap-
proaches found in literature solve this problem by projecting some pattern on a known
target and using the features of the target as references. In our case, since we have two
calibrated cameras available, we can obtain the 3D reference points by collecting them
during the scanning process. The triangulation of each point of the scene happens by
finding the same code (computed from the sequence of patterns [143]) on both cameras.
This will produce 3D points that are associated to codes observed by camera pixels, that
in general do not correspond to the expected code

(
Co
)

for any projector ray. For this
reason, we cannot directly use the 3D points belonging to the acquired surface, rather we
must produce additional points corresponding exactly to the (virtually) observed codes.
This can be done easily by interpolating the camera rays whose codes encompass the ob-
served code

(
Co
)

with weights inversely proportional to the distance from
(
Co
)

of their
respective measured codes. To solve the ray interpolation problem for the unconstrained
camera model, we generalize bi-linear interpolation to the manifold of 3D lines. Under
our parametrization, in fact, a line is represented as a point in IR6. However, the nor-
mal direction and orthogonal position constraints force the lines to lay in a 4-dimensional
manifold. We can generalize (weighted) means over a manifold through the notion of
Fréchet means: a point x residing in manifoldM is the average of points xi ∈ M with
weights wi if it solves

argmin
x∈M

∑
i

wid
2
M(x,xi) (4.4)

Figure 4.1: The bundles of rays that can be obtained after calibration of the projector using
the reconstructed 3D points. In the first image we adopted the pinhole+distortion model.
The second and third image show the results obtained using the unconstrained model
respectively with and without outlier correction. Note that the pinhole model is able to
calibrate all the rays, while the unconstrained model can be populated only by the rays
that hit the scanned surface, thus they are a bit less. Also note that all the miscalibrated
rays have (apparently) disappeared after outlier removal.
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where dM is the geodesic distance overM. A similar approach has previously been ap-
plied to the interpolation of rotations and rigid transformation [124, 199] and, similarly
to those approaches, it can be shown that the interpolation is invariant to the frame of
reference and interpolates the rays through a minimal path with constant linear and an-
gular velocity. For performance reasons, just like in [124], we approximate the Fréchet
mean by taking a linear average in IR6 followed by a projection onto the manifold. These
newly obtained virtual rays can finally be used to triangulate the expected point

(
Ce
)

corresponding to
(
Co
)

and use it to perform the same optimization described in section
4.1.1. Note, however, that equation 4.3 holds only for locally planar surfaces. Generally
speaking, this is not guaranteed if the points

(
Ce
)

are obtained from the scanning of ran-
dom objects. Still, since both man-made and natural objects usually exhibits several low
frequency areas, it is reasonable to guess that at least a sizeable portion of the obtained
expected points will be accurate enough. Moreover, the scanned object will likely move
during different shots, enhancing the coverage of the projector frustum and eventually
adding redundancy. Finally, even if some

(
Ce
)

could suffer from bad estimation, in the
next section we suggest an apt method to filter outliers.

Outliers Filtering

After estimating the projector rays, we can assess their quality by means of their fitting
residual. Specifically, we can set a badness threshold that can be used to deem as unre-
liable rays that obtain a bigger residual. Such rays can be removed, in which case they
will be simply unavailable for triangulation (note that there is no need to estimate all of
the projector rays). Otherwise, it is indeed possible to still recover them by filtering in-
accurate

(
Ce
)

points that could possibly be the cause of the bad estimation. To do this,
we crate a tentative ray candidate by applying equation 4.4 with its available neighbours.

Figure 4.2: Coverage difference between the baseline (top row) and the unconstrained
method (bottom row) for some different subjects.
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Afterwards, this candidate is used to gather associated
(
Ce
)

that are near a given thresh-
old to it, which in turn can be used to obtain a new estimate for the original ray. The
rationale of this method is that the interpolation of the neighbours (if any) would result
in a putative ray good enough for an effective inlier selection. In Fig. 4.1 we show the
bundles of projector rays obtained after calibration. The first image depicts the bundle
obtained by calibrating the projector with a standard pinhole model. This happens by us-
ing the estimated

(
Ce
)

as the 3D points of a virtual calibration objects and the associated
projector codes as their reprojections. While this could seem a good approximation, we
will show in the experimental section that the pinhole model is not able to fully deal with
the imperfection of commercial quality lenses (as also observed in [33]). The other two
show the bundles obtained using the described unconstrained model respectively before
and after outlier filtering and ray correction.

4.1.2 Experimental Evaluation
In order to evaluate the proposed method we built an experimental setup similar to many
off-the-shelf structured light 3D scanners. We accurately calibrated the two 1280x1024
pixels cameras for both intrinsic and extrinsic parameters according to both the pinhole
model and to the unconstrained model. The projector used is an SVGA Dlp micro projec-
tor. We implemented three reconstruction models:

• Baseline: the unconstrained stereo camera reconstruction model that works with-
out needing projector calibration presented in [33]. We expect this to be the most
accurate but to exhibit less coverage;

• Pinhole: a reconstruction configuration that uses the projector calibrated according
to the pinhole model (including distortion) to enhance coverage. We expect this to
be less accurate due to the limitation of the pinhole model, especially for the cheap
optics of commercial-quality projectors;

• Unconstrained: the reconstruction model using the unconstrained projector cali-
brated with the approach proposed.

We tested these models by scanning three different objects: a small figurine of Gane-
sha, which exhibits small details and thus many high frequency areas, a regular sphere,
which is rather smooth and includes only low frequencies, and finally a flat plane, used
as a featureless reference object. For each object we acquired about 100 scans covering
almost all the projector frustum, and we compared the results obtained by calibrating the
projector with different amounts of randomly selected shots subsets. We adopted four
different evaluation criteria that are described in the following subsections.

Enhanced Coverage

With this test we measure the ratio between the area of the surface obtained with the
calibrated projector methods and with baseline. This metric represents the enhancement in
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terms of coverage. In Fig. 4.4 we plot the coverage increment with respect to the number
of shots used to calibrate (which correspond to the total number of scans, since the method
is online). Of course we show only the curves for the Sphere and Ganesha objects, since
there is no increment for the plane (which is equally well seen by both cameras). Note
that the latter object obtains a larger advantage since it contains many convoluted areas
that are hard to capture at the same time by two cameras and the projector. Note also that
the pinhole model reaches immediately the maximum increment while the unconstrained
model requires from 15 to 30 shots to perform equally well. This is expected since in this
case the calibration includes all the rays from the start. However, we will see in the next
test that this advantage comes at the cost of a lower accuracy. Some qualitative examples
of the coverage are shown in Fig. 4.2. Here the scattered edges of the plane are due to
the fact that not all the projector rays have been recovered. This happens simply because
the rays on the periphery of the frustum appears in fewer scans of the subject, which is
expected. If a full coverage of the projection must be guaranteed, this can be obtained
offline using a bigger planar object encompassing the whole frustum.

Reconstruction accuracy

To give a reasonable accuracy measure, we decided to adopt the baseline method as a
reference. This is a reasonable choice since we already discussed in [33] the accuracy
of a camera pair calibrated with the unconstrained model. In this regard, we express the
accuracy as the RMS error, after ICP registration [37], between the acquired surface and
the ”ground truth” offered by the baseline. Note that such RMS is expressed in world unit,
which, since the cameras have been calibrated with a computer monitor, corresponds to
the size of a pixel on that specific screen (approximately 0.2 mm). In Fig. 4.5 we show the
obtained accuracy after different amounts of scans. The pinhole method requires few shots
to reach its maximum accuracy. However it always performs worse that the unconstrained
method. Furthermore the standard deviation of the pinhole curve is narrower. These
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Figure 4.5: Accuracy of the reconstruction with respect to the baseline method. The close-
ups on the left part of the figure show a detail of the reconstruction obtained respectively
with the baseline, unconstrained and pinhole methods.

phenomena can be explained respectively by the fact that the pinhole model is not able
to fully handle the imperfections of a real lens and that its statistical nature makes it very
stable with respect to the set of shots selected for calibration. The unconstrained method,
albeit after several shots, allows for a significantly better accuracy.

Surface Repeatability

While the accuracy measures the compliance of the results with respect to the ground
truth, we are also interested in the repeatability of the reconstruction within the same
method. To evaluate this metric we took several scans of the same subject with slightly
different poses and we computed the average RMS error, after ICP registration, between
the surfaced acquired using the same method. Basically, this measure gives us an insight
about the resilience of the method to random noise and to aliasing error generated by
the interplay between camera and projector rays. In Fig. 4.6 we plot such measure for
the baseline method (which appears as a horizontal line since it does not depends on
the number of scans) and of the other two methods. We can conclude that all the tested
approaches exhibit a good repeatability, in the order of hundredths of a millimetre. This
repeatability appears to be not strongly sensitive to the number of scan used to calibrate,
with the possible exception of the pinhole method that performs less well with few shots.

Planarity

Finally, we measured the planarity of the reconstruction of a reference plane made by
coating with matte paint a float glass. This is done by computing the average RMS error
with respect to a a general plane that has been fitted to the data. The rationale of this
measure is to assess spatial distortions that usually characterizes imperfect calibrations.
The results obtained are shown in Fig. 4.3. We can observe that the pinhole method
produces the surface with larger distortion. This is certainly attributable to the inherently
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Figure 4.6: Repeatability of the reconstruction for different scans of the same subject.
On the right part of the figure we show some slices from the acquired meshes to illus-
trate the alignment between subsequent scans respectively with the baseline, pinhole and
unconstrained methods.

imperfect correction of the distortion.



62 4. Model free camera calibration

4.2 Adopting an Unconstrained Ray Model in Light-field
Cameras for 3D Shape Reconstruction

Light-field cameras have been recently popularized thanks to the recent introduction of
commercial devices such as Lytro and Raytrix models. Such interest in light-field imag-
ing devices is well justified by its numerous applications, ranging from depth map estima-
tion [38,56,99] to super resolution [39,231], refocusing after shooting [165] and creation
of virtual points of view [138, 139].

One of the main hurdles in plenoptic photography derives from the composite imag-
ing formation process which limits the ability to exploit the well consolidated stack of
calibration methods that are available for traditional cameras. All the existing plenoptic
camera calibration methods in literature adopt a multi-pinhole model [40,65,78,78,221].
In this section we analyze the use of a calibration method that escapes the need to adopt
a parametric model by exploiting dense correspondences generated using phase coding
technique [33]. While dense calibration has been already used in literature, this is the first
time that it is attempted with light-field cameras and its correct behavior is not guaranteed.
We further propose a generic triangulation technique that is suitable for the unconstrained
calibrations as well as in the model based ones.

4.2.1 Light-Field Calibration
All the calibration methods for a light-field camera must deal with a common hurdle: Each
micro-lens, being pinhole, could be calibrated independently using standard target-based
methods, ranging from the basic approach proposed by Tsai [218], to more advance model
that could account for the high distortion that micro-lenses usually exhibit [80,117]. How-
ever, these approaches would incur in the disadvantage that the recovery of the target pose
could be very ill-posed when performed on the basis of a single micro-lens image. In fact,
each micro-lens only counts few pixels spanning a large view angle, resulting in poor an-
gular resolution of each micro-lens in isolation. Furthermore, most approaches adopt

(a) (b) (c) (d)

Figure 4.7: A chessboard pattern captured by a Lytro lightfield camera respectively at
minimum and maximum zoom level.
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Figure 4.8: The non-parametric imaging model adopted (see text for details).

image space techniques to localize target features, thus the limited span of each micro-
lens image would severely reduce the number of recoverable correspondences and their
accuracy. This problem can be better understood by looking at Figure 4.7, where the
images of a chessboard acquired by a commercial Lytro lightfield camera are shown. In
Subfigure 4.7(a) and 4.7(b) we show an overall frame and a detail of the image created on
the CCD when the zoom of the main lens is set to the minimum value. The overall frame
(about 3000 pixels wide) appears similar to what would be obtained using a standard
projective camera. However, by looking at the detail of each microlens (about 10 pixels
wide), it can be observed that most of them capture a fully black or fully white field and
just a few see a chessboard corner. Under these conditions, classical calibration methods
that need to relate target points to observed features are useless, hence the need for spe-
cialized technique. The behavior is even more extreme within Subfigure 4.7(d) and 4.7(c),
where we display images of the same chessboard obtained with the maximum zoom level
of the main lens. Here, the overall frame lost any connection to a projective transform
and the images produced by the microlens are so wide that they extend beyond the span
of a single check. The solution we are proposing is to refrain to use any global parametric
model and to independently assess the characterization of every single imaging ray that
insists on the camera sensor. To this end, we apply a dense target localization method
which works in the time rather than the space domain, thus escaping the aforementioned
hindrances. Such dense correspondences, in turn, enable the adoption of a parameter-free
optimization for non-central cameras.

The Parameter-Free Camera Model

Following [33], we adopt a non-parametric camera model where each ray is modeled as an
independent line within a common reference frame. Such reference frame is not directly
related to the physical sensor. In fact, according to this model, image coordinates can be
considered just labels for the imaging rays, which are not related to them by means of
any analytic function (see Figure 4.8). More formally, index i ∈ {1..n} ranges over all
the n pixels of the camera sensor (in no particular order). The ray associated to pixel i
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can be written as ri = (di,pi), where di,pi ∈ IR represent direction and position of the
ray respectively. These vectors satisfy ||di|| = 1 (normalized direction) and di

Tpi = 0
(orthogonal position vector). Any point x in the ray ri satisfies the parametric equation
x = dit + pi for some t ∈ IR. Lacking any explicit structural relation between rays, this
model counts 4 degrees of freedom for each pixel, resulting in several millions unknowns.

A solution space this large needs an exceptional number of observations, and this can
only be obtained using a dense coding strategy, which assigns to each image pixel (i.e. to
each ray) a pair of coordinates on the calibration target. There are several ways to do this,
we follow [33] adopting a flat monitor as the target [100, 207] and using a multi period
phase shift coding [143] in order to obtain dense target coordinates on a Lytro camera
sensor. The coding has been performed both horizontally and vertically. In Figure 4.9 an
example of such dense coding can be seen. We used a scale of red and green values to
show the recovered horizontal and vertical coordinates of the monitor overlaid to a white
light imaging of the scene (resulting in a color blending). The code appears to be smooth,
but of course this is an effect due to detail level of the figure, in practice the image presents
the same repetition effects that can be seen in Figure 4.7 and that will be discussed in
detail in the next section. The dense correspondences acquired over several poses of the
target can be used to feed the iterative optimization method presented in [33] obtaining
the characterization of each ray that has been correctly codified within a large enough
number of different poses. Such method, however, has been designed to work on quasi-
pinhole cameras and there is no guarantee that it works with a plenoptic camera. Neither
it is obvious that the dense coding would work well with the considered imaging process,
especially for the higher camera zoom levels shown in Subfigures 4.7(d) and 4.7(c).

In the next two sections we will study in detail the performance of the dense coding
and of independent rays calibration when applied to a lightfield camera.

Dense Target Acquisition

All our experiments have been performed using a first generation Lytro plenoptic camera,
equipped with a 3280x3280 pixels sensor. Throughout all the tests we used two zoom

Figure 4.9: Dense calibration requires the user to acquire a sequence of horizontal and
vertical patterns from a standard monitor.
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Figure 4.10: Behavior of the dense coding method applied to a Lytro lightfield camera at
different zoom levels (see text for details).

levels for the main lens, which we will refer to as minzoom, corresponding to the 1.0 level
on the camera, and maxzoom corresponding to the 5.5 level (the reader can refer to Figure
4.7 to get an idea about what results can be obtained at such zoom levels).

Horizontal and vertical coding of the target has been performed using multi-period
phase shift on a 21 inches monitor place at about 1 meter from the camera, with period
lengths respectively 11, 13 and 17 monitor pixels and capturing 15 samples for each
period (see [143] for details).

In Figure 4.10 we show the acquired codes within a small portion of the imaging
sensor measuring about 50x50 pixels respectively for minzoon (upper row) and maxzoom
(lower row) (note that the code has been normalized from 0 to 1 for better visualization).
The first column shows the coding error according to [143], a lower value means a more
accurate target position recovery, a value of 1 means that no recovery has been possible
for that particular pixel. At minzoom level the coding error is low and isotropic, this is due
to the low distortion of the microlens images and to the overall quasi-pinhole behavior of
the camera. Note that, although it may be counter-intuitive, at minzoom even the usually
disregarded space between microlens is correctly coded, thus recovering the intersection
between the associated ray and the target.

This allows to effectively calibrate the full sensor, including inter-lens pixels. In the
next section we will show that the resulting calibration exhibits a good accuracy. This is
in strong contrast with standard parametric light-field camera calibration methods, which,
even when capable of capturing features between microlens, would still be unable de-
scribe the behavior of those rays with their models.

Conversely, at maxzoom the coding error is lower around the centers of the microlens
and increases a bit when moving toward the edges. Note that outside the microlenses, the
code is not recovered. This is not due to measuring errors, but rather to the low signals
that reaches the sensor as a result of the strong vignetting (which can be observer also
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on Subimage 4.7(c)). In the two central columns of Figure 4.10 we show respectively
the recovered horizontal and vertical codes. Both are dense and quite smooth, however
the maxzoom setting clearly result in micro images that cover a wider area of the target
and include several repetitions of the same code. This property, obviously, is very useful
if the data is to be used for surface reconstruction, since multiple and well separated
observations of the same point will result (in principle) in a more accurate triangulation.
The code distribution is even more apparent in the last column of the figure, where a slice
of the coding has been plotted (corresponding to the black horizontal line on the third
column of the figure).

The different distribution of codes can be understood very well also by looking at
Figure 4.11. In the first row we overlay to a coded image obtained at minzoom the pixels
with a code less than one code unit far from a given pair of coordinates, showing two level
of details. In the second row we plot the same information over a coded image obtained
at maxzoom setting. It can be seen that a minimum zoom level a point can be observed at
most by one or two microlenses, while at the maximum level the same code is repeated
over ad over throughout a large number of different microlenses spanning a (relatively)
large portion of the imaging sensor.

To this end we can affirm that, while lower zoom levels can be used for tasks such as
refocusing of subaperture images creation, higher zoom levels are best suited for surface
reconstruction tasks, where the larger disparity of the captured light rays results in a more
accurate and robust triangulation. Specifically, in such cases accuracy would be granted
by the wider angle between rays used for triangulation and robustness can be achieved out
of their large number. In Sections 4.2.2 and 4.2.2 we will substantiate these statements.

Figure 4.11: Distribution of points with similar code over the imaging plane.
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Figure 4.12: Evolution of the RMS error of rays during the optimization and number of
culled outliers (see text for details).

Rays Optimization

In order to apply the ray optimization procedure presented in [33] we first need an initial
estimation for the poses of the target and for the rays. We solved this problem by creating a
quite raw sub-aperture image obtained by grouping all the microlens centers. With a very
coarse approximation, such image can be considered as if it were produced by a pinhole
camera, to this end we can get an initial estimate using the standard calibration procedure
made available by OpenCV [43]. The optimization procedure has been performed using
a total of 10 target poses. Since the non-parametric model does not provide an image
plane, the ray optimization does not proceed by minimizing some reprojection error, as
its common with standard calibration methods. Instead, [33] minimizes, with respect to
ray and poses parameters, the sum of the squared distances between the 3D coordinates
of a target point and the ray that observed it. Since our code advances of one unit for each
monitor pixel, the RMS error is a metric measure in the Euclidean spaces expressed in
units of pixels, that in our case, corresponds to about 0.25mm.

In Figure 4.12 we show the trend of this RMS error with respect to subsequent steps of
the optimization process. As for the previous section, the first row represents the minzoom
and the second the maxzoom setup (note that both for the plots and for the color-coded
images the scales are different). In both cases the RMS error converges after just a few
iterations to a final value that is well below one monitor pixel, representing in practice just
a few hundredths of millimeter. Such accuracy should be put in context, considering that
during the calibration procedure the target is placed about one meter far away from the
camera. The colored plots express the RMS error associated to each pixel of the camera
sensors. While with our model pixels are just indexes, it is still interesting to see how the
error is distributed on the sensor, both at a global and microlens scale. Specifically, we
can observe that both zoom levels start with an anisotropic error distribution (probably
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due to the incorrect handling of the global distortion)and rapidly reach a lower and better
distributed RMS error. This is a well-known feature of parameter-free models, which are
very well capable at accommodating both local and global distortions.

Finally, the histograms of Figure 4.12 report the total number of ray outliers that have
been culled after each iteration. Such culling happens when a ray received a valid code,
but it cannot be correctly justified using the estimated poses, that is when it cannot pass
close enough to the target codes it has observed. This can happen for a variety of reasons,
including occlusions (especially on the border of the monitor) or wrong code recovery
due to measurement errors. Note that, even at convergence, the removed rays are in a
magnitude order between 104 and 105, since the overall number of pixel is in the order of
107 we can conclude that more than 99% of sensor elements are correctly calibrated.

4.2.2 3D Shape reconstruction
Generally speaking, the 3D position of an observed point can be recovered by triangula-
tion [106] if it is observed by different points of view by means of an imaging process of
known geometry. To this end, three sub-problems must be addressed:

1. the point must be identified for each point of view;
2. all the viewing direction must be recovered;
3. an intersection between them must be computed;

Sub-problem 1 can be solved in many different ways, ranging from image-based corre-
spondences to structured light coding. Since the goal of this work is not to introduce a
matching method, and we are interested in factoring out most error sources that are not
related to calibration. To this end, we solve the point identification problem using the
same phase shift coding described in the previous section, which we have shown to be
feasible and robust. On the other hand, with respect to subproblems 2 and 3 we introduce
two task specific solutions.

Rays interpolation

One reason that makes constrained camera models such as [40] effective in practice is
that exists a continuous mapping between any point (u, v) in the image plane and the cor-
responding ray exiting the camera. Consequently, 3D point triangulation can be solved
by searching multiple occurrences of the same feature among the micro-lenses and inter-
secting the corresponding rays originating from the feature coordinates. In the case of
phase-shift structured light coding, the set of projected codes is known but is extremely
unlikely that the camera probing rays would sample exactly such codes. However, under
the assumption of locally planar 3D surface, each feature location (u, v) can be recovered
by interpolating the observed codes in the image plane.

Conversely, if we model our camera as a generic sparse bundle of unconstrained prob-
ing rays, there is no trivial way to recover the ray r` exiting the imaging device at any
(possibly sub-pixel) image point p. Further, there is not even a concept of image plane
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but just some existing calibrated rays in space each one sampling an intensity value or,
if we use a structured-light system, a two-dimensional phase code. In other words, the
interpolation cannot be performed on the image plane but on a set of already known rays
whose contribution in the estimation of r` depends on what those rays are observing.

In the following Section we give a solution to the rays interpolation problem. Then,
in Section 4.2.2 we describe in detail our proposed triangulation process for light-field
cameras.

Rays manifold interpolation function Let Rd = {ri} a set of n known camera rays,
and w = (w1, . . . , wn) ∈ Rn,

∑n
i=1wi = 1 a convex combination of weights.

We pose the ray interpolation problem in terms of rigid motions blending. Let K ∈
SE(3), K(ra) = rb be a the rigid motion that transforms a ray ra into rb. A famous result
by Chasles [55] states that any rigid transformation is in fact a screw motion, i.e., a rotation
around an axis placed anywhere in the 3D space, and a translation along the direction of
the axis. when applied to rays ra and rb, the screw motion of all the points under a pure
translation is limited by the length of the translation, while the motion induced by the
rotation in unbounded. For this reason, we chose the rigid motion aligning ra to rb of
minimal rotation as interpolant Kab of the two rays. It is straightforward to see that the
best possible rotation angle is the one between the two vectors da and db (i.e. acos(dTadb))
that rotates the first ray around the axis given by da×db. When the rotation angle and axis
is chosen, the optimal translation is the one moving ra according to a vector T orthogonal
to d′a = db whose length is equal of the distance between the two rays. In other terms,
the best translation is the vector that connects the two nearest points s1 and s2 lying on r1

and r2 respectively. To summarize, given two rays ra and rb, we choose the interpolant
Kab as:

1. The rotation RK around the axis da × db with angle acos(dTadb)

2. The translation TK = s2 − s1

Given a set of interpolants mapping rays to rays, the problem of ray interpolation can
be cast as one of averaging in the manifold of rigid transformations SE(3). This is the
path taken by Dual-quaternion Iterative Blending (DIB) that interpolates roto-translations
in terms of a screw motion represented in terms of dual quaternion [124] and can be
interpreted as computing a manifold averaging in SE(3) endowed with the screw motion
metric. More formally, DIB takes a set of rigid motions Ki with i = 1, . . . , n, and a set of
weights wi and finds the unique motion K∗ that satisfies

n∑
i=1

wi log
(
KiK

∗−1
)

= 0 , (4.5)

where log is the logarithm map of the group SE(3). This interpolation approach exhibits
many useful properties such being constant speed, shortest path and coordinate system
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independent. Adopting this approach, given a set of rays {r1, . . . , rn}, we initialize the
interpolated ray r` = (d`,p`) as their weighted linear combination followed by a repro-
jection on the rays manifold:

d` =

∑n
i=1 widi

||
∑n

i=1 widi||
(4.6)

p` =

∑n
i=1 wipi

||
∑n

i=1 widi||
− d`

(
dT`

∑n
i=1wipi

||
∑n

i=1 widi||

)
(4.7)

Then, we compute the rigid transformationsK`,i as the screw motion between r` and each
ri according to the procedure stated before. Once computed, all the K`,i are averaged via
DIB with the weights w to obtain Kavg. Finally, Kavg is applied to r` to obtain a better
estimate, and the procedure is repeated until convergence.

Interpolation weights estimation In the structured light case, we base the weights es-
timation for the set of rays Rd in terms of the codes c1 . . . cn ∈ R2 observed by each
r1 . . . rn.

In this work, we cast the weight estimation as a regularized barycentric interpolation.
Following [197] we adopted inverse squared distance weight, but add a regularization
factor λ. Specifically, let D be the n× n diagonal matrix whose diagonal entries dii, i =
1 . . . n are the squared distances between each observed code ci and co. Then, the weight
vector w =

(
w1 . . . wn

)T can be estimated as:

min
w

1

2
wT (D + λI)−1w

subject to Cw = co,

1Tw = 1

(4.8)

where C =

 | |
c1 . . . cn
| |

.

Problem 4.8 can be solved as a generalized least squared problem, yielding:

w = AC∗
(
C∗AC∗T

)−1
co∗ (4.9)

where A = (D + λI)−1, C∗ =

(
C
1T

)
and co∗ =

(
co
1

)
.

Ray Selection and Triangulation

Since we are dealing with light-field cameras, we expect each known projected code co be-
ing visible in many different micro-lenses (see Fig. 4.11). Therefore, we start by searching
in the acquired coded image all the pixel locations u1 . . .um whose codes c(u1) . . . c(um)
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Figure 4.13: 3D reconstructions of the target plane using respectively our full method,
disabling the RANSAC selection, disabling the interpolation and, finally, using the para-
metric calibration obtained with [40].

are closer than a threshold dstc to the projector code co. Due to their pinhole nature, we
expect each ui to lie in a different micro-lens.

At this point, for each ui our aim is to create a new ray rui that would have observed
the code co from the same micro-lens where ui lies. Therefore, we look at the adjacent 8
neighbor pixels for valid codes and rays to be used as interpolation data. Then the ray is
interpolated as explained above.

Once all the virtual rays Rt = {ru1 . . . run} are collected, a robust least-square esti-
mation is used to triangulate the 3D point Pco associated to the projected code co. Specif-
ically, we adopt a RANSAC scheme to select a subset Rti ⊆ Rt producing a point Pco
whose squared distance between each ray in Rti is less than a threshold dsts.

Quantitative Analysis and Comparisons

To assess the accuracy of the 3D surface reconstruction (and hence of the calibration)
we need to define some proper error measure with respect to a ground truth. Here we
opt to use the same monitor that has been used for the calibration by creating a set of
additional shots and by triangulating its surface. This approach has the advantage of
producing a planar surface that can be easily fitted allowing to compute the displacement
error between the plane model and each triangulated point.

We tested a total of four setups at the maximum zoom level (which is best suited
for reconstruction for the reasons described in previous sections). The first one adopted
the full method described in this Section. Subsequently, we disabled respectively the
RANSAC selection and the ray interpolation, to study their role in the overall accuracy.
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Finally, we adopted the calibration method proposed in [40], which has been intro-
duced very recently and can be considered among the state-of-the art for parametric light-
field calibration. This latter setup has been obtained using the software made available
by the authors to calibrate the camera and, subsequently, by producing single rays ri ac-
cording to the imaging model presented in the original paper. This way the obtained rays
can be used directly within our pipeline. Note also that we applied both RANSAC and
interpolation to these rays, in order to make the results comparable with the best results
obtained with our method.

In Figure 4.13 we show the surfaces obtained from different points of view. We also
show the distribution of the fitting errors for each method (note that the horizontal scales
are different). The first two columns show the results obtained with our method with
and without the RANSAC selection. The error distribution is quite similar, in fact just
a few misplaced points appear when the consensus between ray is not enforced. This is
somewhat expected since outlier culling has already been performed during calibration
and we think that these inaccurate points result from coding errors that happened during
the reconstruction shot. Conversely, ray interpolation is key to an accurate reconstruction.
In fact, since a microlens covers a wide angle, we expect to observe quite large jumps
in the codes between pixels (and rays), thus making the observation of exactly the same
code (or a code near enough) from the different camera pixels very unlikely.

Finally, the triangulation obtained using the rays calibrated with [40] has a perfor-
mance that is very similar to the one obtained without interpolation (even if, in this case,
we are indeed interpolating the rays before triangulation). Moreover, a bit of global bend-
ing can be seen, probably due to a non perfect compensation of the distortion of the main
lens. It should be noted that, while [40] is not really meant for 3D reconstruction, but
only for image synthesis, it is still one of the most relevant and recent calibration methods
against which to compare.
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4.3 Non-Parametric Lens Distortion Estimation for Cen-
tral Cameras

The inability of describing the imaging model by simple linear projective operators severely
limits the use of standard algorithms with unconstrained models. On the other hand, un-
constrained non-parametric models, despite being originally proposed to handle specialty
cameras, have recently been shown to outperform the pinhole model, even with the sim-
pler setups.

In this section we propose a parameter-free camera model where each imaging ray is
constrained to a common optical center, forcing the camera to be central. Such model can
be easily calibrated with a practical procedure which provides a convenient undistortion
map that can be used to obtain a virtual pinhole camera. We apply our method also to the
calibration of a stereo rig with a displacement map that simultaneously provides stereo
rectification and corrects lens distortion.

4.3.1 Unconstrained Distortion Calibration

To estimate a dense non-parametric lens distortion we start by recovering the 3D light
rays associated to each image pixel. Specifically, we formalize the light path entering
the lens and hitting the sensor at discrete pixel coordinate (u, v) with the straight line
r(u,v) = (o, d(u,v)) passing trough the point o and oriented along the direction d(u,v). The
common point o constrains our model to be central while no restriction is enforced on the
directions d(u,v). Also, the uniform-spaced grid of the CCD provides an ordering on the
rays spatial topology.

Since the model implies 3 degrees of freedom for each pixel, plus additional 3 for the
optical center o, standard point-to-point calibration approaches like [68, 218, 251] cannot
provide enough data to recover a valid solution. We solve this by adopting the dense
structured-light target proposed in [33]. Specifically, we use an high-resolution LCD
screen displaying phase shift patterns to uniquely localize each target point seen by the
camera.

This has a strong advantage with respect to common calibration targets composed
by a discrete set of features: unlike methods based on corner or ellipse localization, we
can reason in terms of discrete camera coordinates. Indeed, for each camera pixel (u, v)
a precise sub-pixel localization of the 2D target-space coordinate of the observed point
can be recovered from the phase unwrapping process. In addition, the coding theory
approach is robust against possible visual artifacts that may appear on target surface like
illumination gradients, specular highlights and shadows. Finally, we take advantage of
the precise manufacturing of modern LCD displays to get an affordable target far more
accurate that the ones created through ink printing process.

To estimate the optical center and the direction of each ray, the calibration target is
exposed to the camera in different positions and orientations. We denote with RTs the
3× 4 matrix describing the roto-translation of the target with respect to the camera in the
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Figure 4.14: Schema of the optimized camera model involving the optical center o, the
ray direction, the observed and expected code and a target pose.

pose s, assuming the target reference frame located in the upper left monitor pixel with
i, j,k versors being respectively the monitor columns, rows and normal. For each pose,
let Cos(u,v) ∈ R2 be the code observed by the ray r(u,v) in shot s.

Since the LCD geometry and the displayed codes are known, we can take advantage
of a poseRTs to map each code to a 3D point in the camera space, viceversa. For instance,
the intersection between a ray r(u,v) and the target plane defined by a pose RTs yields to
the expected code Ce(r(u,v),RTs) ∈ R2 that the ray should have observed (Fig. 4.14).

Single Camera calibration

Following [33], we recover the geometry of the rays entering the camera as the generalized
least-squares minimization problem:

argmin
r(u,v),RTs

∑
u,v,s

(εs(u,v))
T (Σs

(u,v))
−1εs(u,v) (4.10)

where εs(u,v) = Cos(u,v)−Ce(r(u,v),RTs) are the residuals on the target plane between the
observed and expected codes and (Σs

(u,v))
−1 is the error covariance matrix for the given

ray-pose combination that accounts for errors heteroscedasticity in the image plane.
In our setting, we aim to simultaneously minimize the optical center o, the direction

d(u,v) of all rays and the poseRTs for each exposure of the target. Similarly to [33], we can
also take advantage of the conditional independence of the parameters to implement an
alternating optimization scheme that seeks optimal o and d(u,v) assuming last estimation
of RTs fixed, and vice-versa. While our optimization involves less parameters, the opti-
mization itself is more complex since the common optical center introduces a coupling
between the rays which cannot be estimated independently anymore. As a consequence,
the rays optimization step simultaneously estimates the optical center o and the ray direc-
tions d(u,v) given all the poses. For the pose estimation step we adopt the same ICP-based
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optimization introduced in [33]. The former step is discussed in detail in section 4.3.1
while, for the latter, we refer the reader to the original paper.

To start the alternating optimization we need a good initial approximation for the in-
volved parameters. To this end, we gather a set of 3D-2D point correspondences assuming
a discrete grid of target points similar to what can be commonly obtained with a chess-
board. Then, we use calibrateCamera function provided by OpenCV [43] to obtain target
poses for each exposure and the direction of each ray. Note that starting condition is not a
critical aspect since most baseline calibration methods are more than adequate to provide
a reliable initial configuration, especially when dealing with cameras that can be assumed
to be almost central (differently, the method proposed in [33] should be preferred). In ad-
dition, the iterative method is based on a least-square minimization which is guaranteed
to converge to a (possibly local) minimum.

Optical Center and Rays Direction Optimization In the o and d(u,v) optimization step
we consider target poses constant. Let

xs(u,v) = RTs

Cos(u,v)

0
1


be the 3D coordinates of the observed code Cos(u,v) transformed trough the pose RTs.

As shown in [33], the generalized least squares formulation with respect to the target
coordinates corresponds to a linear least squares with the distance of each ray and its
associated 3D point xs(u,v), we can formulate the estimation of the optical center o as:

argmin
o

∑
u,v

min
d(u,v)

∑
s

‖(hs(u,v))
T (I − d(u,v)d

T
(u,v))‖2 (4.11)

where hs(u,v) = (xs(u,v) − o), and the internal minimization apt to find the best d(u,v) min-
imizing the sum of squared distances between r(u,v) and all the xs(u,v). We start by re-
writing the squared norm in (4.11) as (hs(u,v))

T (I − d(u,v)d
T
(u,v))h

s
(u,v) to obtain

argmin
o

∑
u,v

∑
s

‖hs(u,v)‖2 −max
d(u,v)

∑
s

(
dT(u,v)h

s
(u,v)

)2 (4.12)

Let x̄(u,v) be the centroid of the point cloud generated by the intersections of the ray r(u,v)

and the target for each observed pose. Also, let h̄(u,v) = (x̄(u,v) − o) be the distance
vector between o with such centroid. By expressing hs(u,v) as the summation of the two
components:

hs(u,v) = (xs(u,v) − x̄(u,v)) + h̄(u,v)

and expanding the formulation in (4.12) we obtain:

argmin
o

∑
u,v

N(u,v)

(
tr(S(u,v)) + ‖h̄(u,v)‖2

)
− (4.13)

−max
d(u,v)

dT(u,v)

(
N(u,v)S(u,v) +N(u,v)h̄(u,v)h̄

T
(u,v)

)
d(u,v) (4.14)



76 4. Model free camera calibration
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Figure 4.15: Left: RMSe between observed and expected codes for each r(u,v) at the first

(top) and last (bottom) iteration. Right: Rays and calibration target poses recovered by

the optimization. Only a subset of the camera rays are plotted for visualization purposes.

where S(u,v) and N(u,v) are respectively the covariance matrix and the size of the point

cloud generated by r(u,v).
Since we start our optimization with a configuration close to the optimum, we expect

that the distance between each ray and its expected code is as small as few target pixels.

This implies that the spatial extent of each point cloud is order of magnitude smaller than

the distance ‖h̄(u,v)‖2. Under this assumption, an approximate maximizer for (4.14) is

given by

d(u,v) =
h̄(u,v)

‖h̄(u,v)‖2
(4.15)

By substituting (4.15) into (4.13) and (4.14), after some simplifications, we obtain the

following alternative formulation

argmax
o

∑
u,v

N(u,v)

h̄T
(u,v)S(u,v)h̄(u,v)

‖h̄(u,v)‖2
(4.16)

Problem (4.16) cannot be solved in a closed form. To provide a good approximate solution

we compute the derivative with respect to o:

∂
∂o

∑
u,v N(u,v)

h̄T
(u,v)

S(u,v)h̄(u,v)

‖h̄(u,v)‖2 (4.17)

=
∑

u,v 2N(u,v)K(u,v)h̄(u,v)

K(u,v) =

(
−S(u,v)‖h̄(u,v)‖2+I

(
h̄T
(u,v)

S(u,v)h̄(u,v)

))
‖h̄(u,v)‖4 (4.18)
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a projective distorted lattice. Center: An optimal plane is estimated to let the lattice be
as regular as possible. Right: Camera reference system is rotated so that the image plane
is orthogonal to the optical axis. Then, the lattice is re-sampled on an uniform grid to
compute the undistortion function.

If K(u,v) is known, o can be obtained by setting to zero Equation (4.17) and solving the
resulting linear system:∑

u,v

2N(u,v)K(u,v)o =
∑
u,v

2N(u,v)K(u,v)x̄(u,v) (4.19)

SinceK(u,v) is itself a function of o, the maximization problem (4.16) is tackled iteratively
by computing K(u,v) with the estimate of o at iteration t − 1 and then solving (4.19) to
obtain a new estimate at iteration t and repeating this process until ‖o(t) − o(t−1)‖ < ε.
When the optical center is found, the direction of each ray is computed with equation
(4.15). A qualitative result of the effect of the optimization process is shown in Fig. 4.15.

From ray bundle to virtual pinhole camera After the optimization of rays, optical
center and poses we obtain a detailed model describing the light path entering the camera.
Next, we need to choose a convenient image plane that define the intrinsic parameters of
a new virtual pinhole camera, along with a non-parametric dense undistortion function to
be applied to the acquired images.

As a preliminary step, all rays are translated so that their unique intersection point
o lies at the origin. After that, we define a plane ℘ as the locus of points x satisfying
〈x− v℘, n℘〉 = 0, with n℘ = v℘

‖v℘‖ . As soon as an image plane ℘ is chosen, it generates a
virtual camera with the z-axis oriented as the vector n℘ and with a focal length f = ‖v℘‖.
When choosing any ℘ intersecting the ray bundle, all the intersection points inherit the
lattice topology from the camera sensor (Fig. 4.16, Left). However, the lattice projective
distortion and size are affected by the orientation and distance of ℘, respectively. Trough
an optimization process we first find the best image plane to minimize the lattice projective
distortion. Then, we generate the image undistortion function by re-sampling the lattice in
a uniform grid. The grid position and size will define the projection of the optical center
on the image plane (i.e. the pinhole parameters cx and cy) and the undistorted image size
(see Fig. 4.16 for a complete description of the process).
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Image Plane Estimation Choosing a good plane ℘ is crucial to ensure the lattice be as
regular as possible and increase the quality of the subsequent re-sampling and interpo-
lation processes. The optimal image plane is computed in two steps. First, we estimate
the plane orientation n℘ to minimize the variance of the squared distance between each
plane-ray intersection point and its neighbours. This ensure the lattice to be as regularly
shaped as possible (Fig. 4.16, Center). After that, the scaling factor ‖v℘‖ (i.e. the plane
distance from the origin) is computed so that the average distance between all the points
is equal to 1.

Let Id ⊂ R2 be the set of (u, v) indices of the rays. Let U(i ∈ Id) = U(u, v) =
{(u−1, v), (u+1, v), (u, v−1), (u, v+1)} the function defining the set of four neighbours
of a ray indexed by i. The squared distance between the 3D intersections generated by
rays ri and rj∈Id with a plane ℘ lying at unitary distance from the origin is given by:

D2
i,j = ‖ di

nT℘di
− dj
nT℘dj

‖2 (4.20)

Consequently, the variance of the squared distances D2
i,j between each ray and its

neighbours is given by the function

fD =
∑
i

∑
j∈U(i)

(
D2
i,j

)2

−
(∑

i

∑
j∈U(i)

D2
i,j

)2

(4.21)

We cast the plane orientation problem as

argmin
n℘

fD

such that ‖n℘‖ = 1
(4.22)

solved via geodesic steepest descent. We start with an initial estimate of n(0)
℘ =

(
0 0 1

)T .
For each iteration t, we update the estimate of n(t)

℘ enforcing the constraint of ‖n℘‖ =

1 by rotating n
(t)
℘ around the rotation axis Ψ = ∇f (t−1)

D × n
(t−1)
℘ for an angle θ =

λmin(‖Ψ‖, ε). The constant λ affects the speed of the gradient descent while ε gives
an upper bound on the amount of rotation to avoid instabilities.

To perform effectively the optimization,∇fD can be analytically computed as follows:

∇fD =
∑
i

∑
j∈U(i)

2D2
i,j

∂

∂n℘
D2
i,j − (4.23)

−
(∑

i

∑
j∈U(i)

D2
i,j

)(∑
i

∑
j∈U(i)

∂

∂n℘
D2
i,j

)
∂

∂n℘
D2
i,j =

2

(nT℘di)
2

(
dTi dj
nT℘dj

− dTi di
nT℘di

)
di + (4.24)

+
2

(nT℘dj)
2

(
dTj di

nT℘di
−
dTj dj

nT℘dj

)
dj
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Once n℘ has been recovered, we set f = ‖v℘‖ = 1
2N

∑
i

∑
j∈U(i) Di,j where N is the

number of lattice edges.

Generating the Undistortion Map Once an optimal plane has been found, we setup
an interpolation procedure to re-sample the points on a regular grid. Let p(u,v) be the
intersection of r(u,v) with the optimized plane ℘. First, all the points p(u,v) are rotated
around the origin so that the vector v℘ coincides with the z-axis (Fig. 4.16, Right). After
discarding the third component of all the points (all equal to 1 after the rotation), we
compute the integral coordinates of the top-left tlp ∈ Z2 and bottom right brp ∈ Z2

corners of the containing bounding-box. At this point, we can provide the intrinsic matrix
of the new virtual pinhole camera as:

K =

 ‖v℘‖ 0 −tlp
0 ‖v℘‖
0 0 1

 (4.25)

The undistorted image associated to the camera described by K corresponds to a unit-
spaced grid inside the area of the bounding box. This leads to the construction of a dense
displacement function Ud : B → R2 that maps the coordinates of the output undistorted
image B ⊂ N2 to sub-pixel coordinates of the input image1.

To produce the displacement map Ud, we generate the quadrilaterals q1 . . . qn formed
when considering the 4-neighbours connectivity of the points p(u,v) with the topology
induced by the rays lattice. For each quadrilateral qi, we compute the homography Hi

transforming the inner space bounded by its four vertices into the square defined by the
CCD location of the four rays associated to each vertex. Then, the displacement map Ud
can be obtained by:

Ud(u
′, v′) = HQ(u′,v′)(u

′, v′, 1)T (4.26)

where Q(u′, v′) is the function that returns the index of the quadrilateral containing the
point

(
u′ v′

)T , if exists.

Filtering data outliers Apart for being central, our model gives no constraint on the
relative position of the rays. As a consequence, erroneous data caused by failures in the
phase decoding process may lead to outliers in the ray estimation. Since no regularization
is involved, we included a data filtering step at each alternation of rays-poses optimiza-
tion. Specifically, we define the function E(u, v)s : Id → R as the point-line distance
between the ray r(u,v) and the point xs(u,v). We then filter the observed codes Cos(u,v) by
considering the median of the error function E in a squared neighbourhood of each point
(u, v). If E(u, v)s is greater than κ times the median, Cos(u,v) is marked as invalid and
not used any more in the subsequent iterations. Rays with less than 5 observed codes are
completely removed from the optimization. A qualitative example of the output of the
filtering process is shown in Fig. 4.17. Even if we filter erroneous observed codes, it may

1The obtained undistorted image has the same size of the bounding box
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Figure 4.17: The effect of codes filtering step displayed by accumulating the valueE(u, v)
among all the poses s. Left: original data may contain clear outliers near the boundary
of the target. Right: after the filter almost all the spikes are no more visible.Note that
remaining artefacts are not topological outliers (as for 4.3.1) and are probably due to the
target non-planarity at the corners.

happen to obtain some quadrilaterals qi for which the topological order of the vertices is
not coherent with the order of the relative rays. Since this would lead to a non-injective
displacement map Ud, such rays are marked as outlier and subsequently replaced by a
linear interpolation performed over all the unmarked neighbours.

Dealing with Stereo Cameras

Since each ray acts independently with respect to the others, our approach can be easily
extended to simultaneously calibrate and rectify a stereo rig. The pose optimization step
remains exactly the same with the foresight to merge the two bundle of rays associated
to each camera. Conversely, the optical centre and rays direction optimization can be
performed independently on the two sets operating the same instance of target poses.

As a starting configuration for the subsequent optimization we performed the intrinsic
and extrinsic calibration of the camera rig using the function provided by OpenCV library.
Then, we are creating a single virtual imaging device by adopting the reference frame of
the first camera for both. At the end of the optimization, we obtain an estimate of the two
optical centres o1 and o2 and the directions of the rays in the two bundles. From this point,
we roto-translate the rays to let o1 coincide with the origin and the epipole e = (o2 − o1)
being oriented along the x-axis.

Rectification and Undistortion Map If we constrain the image plane optimization so
that n℘ remains orthogonal to e, the estimated plane would have the property to keep all
the epipolar lines for the left and right cameras being parallel. To achieve this, we slightly
modify the optimization discussed in section 4.3.1 by fixing the rotation axis Ψ = e

‖e‖ and

the rotation angle to θ = λmin(〈∇f (t−1)
D ,Ψ× n(t−1)

℘ 〉, ε).
After image plane optimization, two sets of points are generated by the intersection

of the two ray bundles with the plane. The set of points generated by the right camera is
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Figure 4.18: Left plots show a comparison of our non-parametric distortion model com-
pared with Fitzgibbon’s rational model. On the right, two examples of an undistorted
images generated with our method. Note that black artifacts on the edges are due to the
lack of clipping after undistortion (yellow guides have been superimposed in order to help
to better appreciate rectification).

translated in the opposite direction of the x-axis by the length of the baseline T = ‖e‖ to
let the right optical center coincide with the left one. Subsequently, two different bounding
boxes are generated with the two sets of points. The height of the two boxes (i.e. the
vertical coordinates of the top-left and bottom-right corners) are forced to be equal so that
the epipolar lines are coincident with the rows of the two images. To keep the largest
available common area between the two images, the left edge of the merged bounding
box is taken from the bounding box of the right point set. Symmetrically, the right edge is
taken from the left point set. Note that, this way, the intrinsic matrices of the two cameras
are exactly the same.

Finally, we compute the re-projection matrix

Q =


1 0 0 −tlp
0 1 0
0 0 1 ‖v℘‖
0 0 1/T 0

 (4.27)

so that, given any dimensional image point (u′, v′) and its associated disparity d, it
can be projected into four-dimensional projective space with(

x y z w
)T

= Q
(
u′ v′ d 1

)T (4.28)

4.3.2 Experimental Section
In order to assess the performance of the proposed approach, we compared it against
the unconstrained model [33] and the rational distortion model proposed by Claus and
Fitzgibbon2 [68] in both single camera and stereo setups3.

Our test setup included two PointGrey Flea3 1Mp grayscale cameras with approxi-
mately 60o field of view, fastened to a common rigid bar with a disparity of about 5cm.

2The most accurate method available from the OpenCV library
3Source code and datasets available at: anonymized URL
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Figure 4.19: In the left-most plot we show the average relative error between the expected
and measured distance of two triangulated points. In the right we show an example of a
stereo-rectified image pair.

The calibration target was a 380 × 304mm commercial LCD monitor with a resolution
of 1280 × 1024 pixels. The cameras have been calibrated using a set of 20 shots and
tested over a set composed of 40 different shots of the same active target. These shots
have been acquired both with a single camera and with the complete camera pair, tak-
ing care to cover as much as possible of the respective fields of view. The target has
been acquired at random poses with a distance from the cameras ranging from roughly
100 to 300 mm and a rotation with respect to the optical axis ranging from 0 to about
π
4

radians. (Fig. 4.15, Right) Using the same data sets, we performed three different
calibrations, using respectively the fully unconstrained model (Unconstrained), the non-
parametric distortion proposed in this work (Non-Parametric) and the rational distortion
(Rational). Average convergence time for both Unconstrained and Non-Parametric cali-
bration was about 10 minutes, while Rational always required less than 2 minutes.

Finally, we compared the performance of these methods by means of two experiments,
assessing respectively the ability of providing a strictly projective virtual camera and to
perform an accurate triangulation in the 3D space.

Image Undistortion

With this experiment we are testing the quality of the undistortion, that is how well the vir-
tual pinhole camera obtained with the different methods approximate an ideal projective
geometry. To this end, we exploited the projective invariance of straight lines. Specifi-
cally, for each horizontal and vertical scanline of the undistorted camera we collect the
observed codes and we fit a straight line on them. Since we can assume the screen pix-
els to be regular and equally spaced, better pinhole approximation should exhibit a lower
RMS error to the fitted line. Since a virtual pinhole cannot be produced with the fully
unconstrained model, in Fig. 4.18 we plotted only the results for the Non-Parametric and
the Rational model. While both methods are affected by some error, it is clear that the
approximation given by the Non-Parametric approach yields less distorted lines. Further-
more, the structured nature of the RMS error obtained with the Rational model strongly
suggests a systematic error due to the inability of the model to properly fit the data.
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Figure 4.20: A small synthetic sinusoidal pixel displacement has been further applied to
the acquired images (left). As expected, the rational model is unable to handle this distor-
tion (center), which can be corrected with our non-parametric distortion model (right).

Note that, while our approach yields a much smaller undistortion error than the Ratio-
nal model, there is still a strong spatial coherency in the error. We think the non-centrality
of the camera to be the predominant error source, since the RMS consistently grows to-
wards the image boundaries. We suggest that the non-planarity could also contribute,
being the borders of the target usually located near the border of the captured image.

3D Measurement

In our second experiment we investigate the calibration quality of the camera pair. Using
the rectificated image pair, we triangulate the 3D position of two random screen pixels
observed by both cameras. We repeated the experiment for several shots with different
positions of the target screen. In Fig. 4.19 we plotted the average relative error between
the expected and measured distance of two triangulated points with respect to the distance
of the target from the camera pair. In this case, the Unconstrained model shows the best
performance as it produces a lower error at any distance and more repeatable measures.
The Non-Parametric model exhibits a slightly higher error. This proves that the additional
constraint hinders a perfect calibration. Still it is noticeably more reliable than the Ra-
tional model, thus it can be deemed as a reasonable alternative to the totally free model
when high accuracy is needed, but it is not desirable to lose the advantages of the pinhole
model. Finally, in Fig. 4.21 we give a qualitative example of a reconstructed range-map
after stereo rectification provided by the OpenCV stereoRectify function and our calibra-
tion pipeline. The better alignment of epipolar lines with image rows gives a more precise
and dense reconstruction, especially on grazing surfaces.
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Figure 4.21: Reconstructed range-map triangulated with OpenCV calibration and rectifi-
cation (Left) and our proposed method (Right).



II
Non-Rigid matching





5
Related Work

In the previous part of the thesis we have seen how finding matching points between
two objects is one of the fundamental task in the processing of data in computer vision
tasks. In that specific case objects were represented by images acquired by one or more
cameras, and we tried to find correspondences minimizing some measure of euclidean
distance distortion.

Another challenging family of matching problems is that of ”deformable” shape match-
ing. In this case we allow objects to undertake Non-Rigid transformations, that is, eu-
clidean distances in the embedded space are not preserved by the deformation. Re-
searchers have focused they attention in the particular class of quasi-isometric deforma-
tions in which some notion of intrinsic distance is preserved by the transformation. This is
the case, for instance, of articulated bodies (e.g. humans) in different poses [48,126,127].

Although 2D Non-Rigid shape matching is a relevant field in the Computer Vision
and Geometry Processing communities [89, 167], we focus our attention on the three-
dimensional case.
As opposed to images matching, usually 3D shapes lack of local informations like tex-
ture and colors, making feature descriptors of shapes not as distinctive. Moreover when
we aim to be invariant to quasi-isometric deformations looking at the preservation of Eu-
clidean distances in the IR3 embedding of the shape is not an options, we instead look at
the preservation of some intrinsic metric (we consider shapes as a destigmatization of a
smooth Riemmanian manifolds), that is some distance function on the manifold which is
independent to the embedding space and depends only on the Riemannian structure of the
shape.

In this scenario, a straightforward measure of the correspondence quality is the dis-
tortion of the intrinsic metric, and the correspondence problem can be easily formulated
in term of finding the correspondence that minimizes this metric distortion. The simplest
construction of a intrinsic metric is the geodesic metric, which corresponds to the length of
the shortest curve on the surface (minimal geodesic) connecting two given points. Despite
its natural interpretation as distance over the surface, geodesic distance is very sensitive
to noise, other intrinsic metrics have been proposed trying to mitigate this problem based
on the diffusion geometry [70].
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5.1 Partial shape matching

So far we assumed that the two shapes to be matched was a complete representation of
the same ”object”. Even more challenging is partial correspondence, where one is shown
only a subset of the shape and has to match it to a deformed full version thereof. Partial
correspondence problems arise in numerous applications that involve real data acquisition
by 3D sensors, which inevitably lead to missing parts due to occlusions or partial view.

For rigid partial correspondence problems, arising e.g., in 3D scan completion appli-
cations, many versions of regularized iterative closest point (ICP) approaches exist, see
for example [18, 22].
Attempts to extend these ideas to the non-rigid case in the form of non-rigid or piece-wise
rigid ICP have been explored in recent years [140]. By nature of the ICP algorithm, these
methods rely on the assumption that the given shapes can be placed in approximate rigid
alignment to initiate the matching process. As a result, they tend to work well under small
deformations (e.g., when matching neighbouring frames of a sequence), but performance
deteriorates quickly when this assumption does not hold.
For the non-rigid setting, several metric approaches centred around the notion of mini-
mum distortion correspondence [48] have been proposed. Bronstein et al. [45, 47] com-
bine metric distortion minimization with optimization over matching parts, showing an
algorithm that simultaneously seeks for a correspondence and maximizes the regularity
of corresponding parts in the given shapes.
Rodolà et al. [182] subsequently relaxed the regularity requirement by allowing sparse
correspondences, and later introduced a mechanism to explicitly control the degree of
sparsity of the solution [181]. Finally, in [189] the authors proposed a voting-based for-
mulation to match shape extremities, which are assumed to be preserved by the partiality
transformation. Being based on spectral features and metric preservation, the accuracy
of the aforementioned methods suffers at high levels of partiality, where the computa-
tion of these quantities becomes unreliable due to boundary effects and meshing artifacts.
Furthermore, these methods suffer from high computational complexity and generally
provide only a sparse correspondence.
Pokrass et al. [177] proposed a descriptor-based partial matching approach where the op-
timization over parts is done to maximize the matching of bags of local descriptors. The
main drawback of this approach is that it only finds similar parts, without providing a
correspondence between them.
Windheuser et al. [237] formulated the shape matching problem as one of seeking mini-
mal surfaces in the product space of two given shapes; the formulation notably allows for
a linear programming discretization and provides guaranteed continuous and orientation-
preserving solutions. The method was shown to work well with partial shapes, but re-
quires watertight surfaces as input (e.g., via hole filling).
Brunton et al. [51] used alignment of tangent spaces for partial correspondence. In their
method, a sparse set of correspondences is first computed by matching feature descriptors;
the matches are then propagated in an isometric fashion so as to cover the largest possi-
ble regions on the two shapes. Since the quality of the final solution directly depends on
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the initial matches, the method is understood as a “densification” method to complement
other sparse approaches.
Other recent works include the design of robust descriptors for partial matching [223].
In the context of collections of shapes, partial correspondence has been considered in
[60, 73, 222].

All the aforementioned works are based on the notion of point-wise correspondence
between shapes. Recently, Ovsjanikov et al. [171] proposed the functional maps frame-
work, in which shape correspondence is modeled as a linear operator between spaces of
functions on the shapes.
The main advantage of functional maps is that finding correspondence boils down to a
simple algebraic problem, as opposed to difficult combinatorial-type problems arising in,
e.g., the computation of minimum-distortion maps.
While several recent works showed that functional maps can be made resilient to missing
parts or incomplete data [114,131] overall this framework is not suitable for dealing with
partial correspondence.

In section 6.2 we propose a method for computing partial functional correspondence
between non-rigid shapes. We use perturbation analysis to show how removal of shape
parts changes the Laplace-Beltrami eigenfunctions, and exploit it as a prior on the spec-
tral representation of the correspondence. We treat corresponding parts as optimization
variables and use them to weight the functional correspondence.

5.2 Joint shape matching
While all the aforementioned works tackle the problem of shape matching from a pairwise
perspective, there are some recent attempts trying to take advantage of the information
brought in by matching a collection of shapes simultaneously [60, 115]. The key idea is
that considering multiple shapes at once can provide information about which parts of the
shapes are characteristic of the model and which ones has to be considered as outliers.
One natural requirement is cycle-consistency – namely the fact that map composition
should give the same result regardless of the path taken in the shape collection.

Probably the earliest attempt to tackle multiple shape matching in a principled way is
the synchronistic matching approach of Schmidt et al. [193]. Given a collection of planar
shapes, the authors model the joint matching problem as the search of a shortest path in
their product space. Due to the resulting intractability, the problem is relaxed to a series
of pairwise sub-problems, and the cycle-consistency criterion introduced as a regularizer.
The method allows to improve initial pairwise solutions, but consistency is not satisfied
exactly and the method operates under the assumption that all shapes in the collection are
similar.
Pachauri et al. [172] took a similar perspective by formulating the matching problem
using the language of combinatorial optimization; due to the spectral relaxation they per-
form, the method tends to be sensitive to noise and outliers.
Recently, Yan et al. [243] formulated the problem as one of simultaneous multi-graph
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matching [203], but similarly to [172, 193], cycle-consistency is relaxed and gradually
infused in a pairwise matching process as a regularizer.
Zach et al. [248] were probably the first to make an explicit attempt at finding solutions
meeting the cycle-consistency requirement. Starting from an initial graph of potential
pairwise associations among the objects in the collection, they detect and remove erro-
neous edges as the ones giving rise to inconsistent loops in the graph. As an extension
to this approach, Nguyen et al. [166] apply global optimization to select cycle-consistent
maps while at the same time allowing edges to be replaced by better map compositions.
The method performs well when the full point-to-point correspondence is known and ac-
curate for all pairs of objects. Huang et al. [116] improved upon [166] by allowing sparse
correspondences; however, the approach does not apply when the shapes being matched
are only partially similar.
Finally, Sahillioğlu and Yemez [190] proposed a greedy algorithm, based on dynamic
programming, that seeks nearly-isometric consistent solutions across all shapes in the
collection. The approach only works well when matching shape extremities, and it is sus-
ceptible to outlier shapes and partiality. In particular, its accuracy depends on the specific
ordering of the shapes in the collection.
All the methods outlined above demonstrate good practical performance in controlled
settings, however there has been a general lack of theoretical guarantees that ensure cor-
rectness of the final correspondence under unfavorable conditions. First steps in this di-
rection are taken by Huang and Guibas [115], who formulate a convex relaxation to the
joint matching problem using the language of semi-definite programming. The authors
derive theoretical guarantees on the recovery of the correct joint correspondence from
possibly noisy input maps [127].
Very recent works in the field of information theory explore this direction more ab-
stractly [59], giving conditions for perfect recovery under large outlier ratios.
Chen et al. [60] recently applied this analysis to match partially similar objects from a
small fraction of densely corrupted pairwise maps. To our knowledge, their algorithm
currently represents the state of the art within this family of approaches.

Although most of these approaches work well provided that the input maps are suffi-
ciently accurate, they still suffer in the presence of noise (incorrect matches) in the maps
themselves, or outlier (extra-class) shapes in the collection. Further, due to the combina-
torial difficulty of imposing the consistency requirement, many of the existing schemes
provide no guarantee that cycle-consistency is satisfied exactly.

In this section 6.1, we introduce a new method for the joint matching of multiple
deformable shapes in a collection. Unlike the common approach outlined above, we
do not require any pairwise correspondence to be given as input, and instead formulate
the problem as an optimization directly over the space of cycle-consistent (multi-way)
matches. As such, our method produces matches that are consistent by construction.



6
Shape matching under

quasi-isometric deformations

Deformable shape matching is undoubtedly a challenging family of matching problems.
Objects are allowed to undertake Non-Rigid transformations, that is, euclidean distances
in the embedded space are not preserved by the deformation. Even when remaining in the
R3 domain, and thus not applying the image projection transformation, finding correspon-
dences between shapes under quasi-isometric deformations is a very ambitious problem
which has received a great deal of attention by the scientific community in the last years.
Even more difficult is when we have to deal with partiality on one or both (or more) of the
shapes to be matched. One of the main complication in the non-rigid scenario is, indeed,
the lack of meaningful local descriptors. If in the image and 3D rigid domain we can rely
in texture information and/or strict spatial invariants, when we allow for quasi-isometric
transformations we are left only with intrinsic properties of the surface. Even if various
local descriptors have been proposed in the literature [49, 130, 238], the more successful
descriptor still remain the WKS [26] which rely on global informations of the surface.

We can partition approaches to the non-rigid matching into two classes: sparse and
dense matching. Algorithm adopting the first approach seek correspondences only be-
tween a restricted subset of points of the shapes, this means that a subsequent densifi-
cation step is needed to diffuse correspondences over the whole shape. Dense matching
approaches, conversely, try to solve the correspondence problem for the whole shape at
once.

In this chapter we try to tackle the Non-rigid Partial matching problem from both
perspectives. In section 6.1 we cast the problem of multiple shape matching as an opti-
mization over the space of all the cycle-consistent matches. The L1 optimization adopted
allows us to be robust to shape partiality and outliers in the collection at the cost of retriev-
ing only sparse correspondences. In section 6.2, conversely, we formulate the matching
problem as the pursuit of a functional map, exploiting the behavior of the Laplacian eigen-
decomposition under partiality. This allows us to retrieve the point-to-point map between
two partial shapes.
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6.1 Consistent Partial Matching of Shape Collections via
Sparse Modeling

Finding matches among multiple objects is a research topic that has received a good deal
of attention in recent years. In its most common formulation, it translates to the problem
of determining point-to-point maps between all shapes in a collection, subject to the re-
quirement that the extracted correspondence be in some way “consistent”. To this end, a
natural and widely accepted criterion is cycle-consistency [248], namely that composition
of maps along loops in the collection should approximate the identity.

In this section, we introduce a novel technique to construct accurate, consistent corre-
spondences within shape collections. Our formulation has the following key properties:

• The method operates by optimizing directly over the space of cycle-consistent cor-
respondences, without requiring pairwise maps to be given as input. As a result,
cycle-consistency is satisfied exactly by construction.

• We employ sparsity techniques in order to cope with partially similar as well as
outlier shapes in the collection – an aspect that has received limited interest so far,
but that can frequently occur in practical scenarios.

6.1.1 Multi-way matches
We model shapes as compact two-dimensional Riemannian manifolds Si (possibly with
boundary) embedded in R3, equipped with the intrinsic distance function di.

Let us be given a collection C = {S1, S2, . . . , Sn} of n shapes. The product space
S1 × · · · × Sn consists of all possible n-way (i.e., joint) matches between the shapes in C.
However, in practical settings it is often the case that outliers (e.g., shapes belonging to
different classes) as well as partially similar shapes (e.g., man and centaur) are present in

Figure 6.1: A partial multi-way correspondence obtained with our approach on a hetero-
geneous collection of shapes. Our method does not require initial pairwise maps as input,
as it actively seeks a reliable correspondence by operating directly over the space of joint,
cycle-consistent matches. Partially-similar as well as outlier shapes are automatically de-
tected and accounted for by adopting a sparse model for the joint correspondence. A
subset of all matches is shown for visualization purposes.
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A B C

Figure 6.2: A collection of shapes may carry partiality at different levels. Our
method allows to extract consistent correspondences reliably under partial similarity (e.g.,
S1/S2/S3) and at the same time detect and avoid outlier shapes (S5).

the collection (see Fig. 6.2). In order to deal with such cases, we extend the set of possible
joint matches as follows. Formally, we consider the set constructed as the union

Γ̆ =
⋃
k∈I

∏
j∈k

Sj , (6.1)

where I is a collection of index sets k defined by the power set (denoted by P) relation

I = {k : k ∈ P({1, 2, . . . , n}) ∧ |k| > 1} . (6.2)

In other words, Γ̆ is the set of all possible m-fold Cartesian products between the shapes
in C, with 1 < m ≤ n. Clearly, this set also includes S1 × · · · × Sn and in particular |Γ̆|
grows exponentially with the number of shapes. Each element γ ∈ Γ̆ with |γ| = d ≤ n
now represents a joint match between a subset of d shapes from the collection.

Definition 1. We define a multi-way match among d ≤ n shapes to be any element γ ∈ Γ̆.
A multi-way match is represented as the ordered d-tuple

γ = (pi)i∈k with k ∈ I and pi ∈ Si ,

where k is a sequence of shape indices, denoting the shapes matched by γ. We will write
pi ∈ γ to say that the vertex pi is matched via γ.

Note that two multi-way matches γ, γ′ ∈ Γ̆ may in general have different lengths d
and d′. In particular, they may or may not have shapes in common. We will therefore
define the overlap γ ∩ γ′ as the longest common subsequence of their shape indices. For
example, in Fig. 6.2 we have the multi-way matches A,B,C ∈ Γ̆. For A and B we have
the overlap A ∩B = (1, 2), whereas A ∩ C = (3) and B ∩ C = ∅.

For our purposes, we are interested in subsets of Γ̆ that satisfy certain properties, as
described in the following:
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Definition 2. A multi-way correspondence between the n shapes in C is a subset Γ ⊂ Γ̆
satisfying: for every Si ∈ C and for every pi ∈ Si, there exists at least one γ ∈ Γ such
that pi ∈ γ.

The above definition ensures that in a multi-way correspondence each vertex of each

shape is matched to corresponding vertices on (a subset of) the other shapes. We now

define what is the meaning of cycle-consistency in our setting.

Definition 3. We say that a multi-way correspondence Γ between shapes in the collection
C = {Si}ni=1 is cycle-consistent if, for any j, k, � ∈ {1, . . . , n}, whenever Γ matches
pj ∈ Sj to pk ∈ Sk and matches pk to p� ∈ S�, then Γ also matches pj to p�.

Remark 1
A multi-way match is always cycle-consistent by construction, since it is an element of a

product set. This applies to any cycle, with length possibly longer than 3.

Note that while individual multi-way matches are always cycle-consistent, a fixed

point pi ∈ Si might be mapped to different points on the other shapes via different multi-

way matches. We therefore introduce the following notion:

Definition 4. Two distinct multi-way matches γ, γ′ ∈ Γ are said to be incompatible when-
ever pi ∈ γ and pi ∈ γ′ for some pi ∈ Si and i ∈ {1, . . . , n}.

An illustration of incompatible matches is given in Fig. 6.3.

p1
p2

p3

q1

Figure 6.3: Left: The red matches violate cycle-consistency, since p1 �= q1. Right: Exam-

ple of two incompatible multi-way matches (red and green): the hand in the middle shape

is assigned to multiple distinct points on the other shapes.

6.1.2 Optimizing over the space of multi-way matches
The goal of joint object matching is to determine a (possibly dense) correspondence

among multiple shapes in a collection, with the requirement that the correspondence be
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consistent along cycles of any length. In this Section we formulate the joint matching
problem as one of minimum-distortion correspondence [155]. Differently from most other
approaches [116, 166, 172, 190, 193, 243, 248] our formulation comes with the theoretical
guarantee of cycle-consistency, and additionally deals with partially similar as well as
outlier shapes in a natural way.
Metric distortion. Suppose we are given two multi-way matches γ, γ′ ∈ Γ respectively
putting |γ| and |γ′| points into correspondence, where in general |γ| 6= |γ′|. Then, we can
quantify the quality of the correspondence by the cost function ε : Γ × Γ → R+ ∪ {∞}
defined as:

ε(γ, γ′) = max
pk,p`∈γ
p′k,p

′
`∈γ

′

|dk(pk, p′k)− d`(p`, p′`)| . (6.3)

Here we tacitly assume that the multi-way matches are compared only on their overlap,
i.e., over the shapes in common. In (6.3) we put ε(γ, γ′) = ∞ whenever γ and γ′ are
incompatible (see Fig. 6.3) or non-overlapping. This definition of cost encodes the maxi-
mum metric distortion attained by the two multi-way matches across the shape collection.
Multi-way Lp distortion. A multi-way correspondence Γ ⊂ Γ̆ can be alternatively mod-
eled as a binary function g : Γ̆→ {0, 1} such that for every Si ∈ C and for every q ∈ Si,∑

γ∈Γ̆
s.t. q∈γ

g(γ) ≥ 1 . (6.4)

Note that function g can be seen as an indicator function over the space of all possible
multi-way matches. Then, the condition above simply asks that each point in each shape
is contained in at least one γ ∈ Γ̆ for which g(γ) = 1, thus being a strict requirement to
match all points in all shapes.

The overall metric distortion caused by a correspondence Γ can then be measured by
the Lp distortion:

‖ε‖pLp(g×g) =
∑
γ,γ′∈Γ̆

εp(γ, γ′)g(γ)g(γ′) , (6.5)

with p ≥ 1. Now, determining a correspondence of minimum distortion amounts to
seeking a minimizer (not unique in general) to:

min
g:Γ̆→{0,1}

‖ε‖pLp(g×g) (6.6)

where g ranges over all correspondences Γ ⊂ Γ̆.
Example. In the specific case where n = 2, a multi-way match γ = (p1, p2) reduces to a
pair of points and the error criterion of Eq. (6.3) simplifies to the absolute metric distortion
ε((p1, p2), (q1, q2)) = |d1(p1, q1) − d2(p2, q2)|. Then, by taking the limit for p → ∞ the
expression (6.6) yields the classical Gromov-Hausdorff distance between metric spaces
(S1, d1) and (S2, d2) [155].
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Dealing with partiality. The combinatorial complexity of optimizing over all possible
multi-way correspondences Γ ⊂ Γ̆ makes the problem intractable even for small collec-
tions. Partial remedy to this issue is provided by relaxing the binary map to take continu-
ous values, i.e., g : Γ̆→ [0, 1].

We further note that, although Eq. (6.1) enables us to better deal with partiality, the
constraint defined in Eq. (6.4) requires us to match all points in all shapes. However, we
would like outlier shapes to not partake to the final correspondence. Furthermore, we
want to allow individual shape points to be left unmatched if they do not find suitable
matches throughout the collection.

We model this requirement by introducing a sparse model for the correspondence. To
this end, we relax condition (6.4) by demanding

∑
γ g(γ) = 1 over Γ̆. This requirement

gives us an interpretation of g as a discrete probability distribution over the space of all
multi-way matches. Importantly, the L1-like constraint on g has a sparsity-promoting
effect on the solution, hence modeling local forms of partiality.

Unfortunately, directly minimizing a problem of the form given in Eq. (6.6) sub-
ject to

∑
γ g(γ) = 1 would yield trivial solutions. Specifically, we can characterize the

global opt.
local opt.

global minimizers by: g(γ) = 1 for γ = γ? and g(γ) = 0
otherwise, where γ? is taken to be any γ ∈ Γ̆. This
amounts to concentrating the whole mass of g into one
single multi-way match, as illustrated in the inset figure.

We sidestep this issue by passing to a maximization
problem. Suppose we are given, as opposed to the cost ε,
a similarity function s : Γ̆ × Γ̆ → R+ measuring the ex-
tent to which two given multi-way matches preserve pair-
wise distances. A possible choice is given by the Gaussian
score:

s(γ, γ′) = e
− 1
µ2
ε2(γ,γ′)

, (6.7)

where µ2 ∈ R+ is the variance of s. Note that s(γ, γ′) = 0 whenever ε(γ, γ′) =∞; that is,
incompatible matches are assigned zero similarity. We get to the following optimization
problem:

Problem 1
(Partial multi-way correspondence). Given a collection of shapes C, we seek a partial
multi-way correspondence among them as a maximizer to:

max
g:Γ̆→[0,1]

∑
γ,γ′∈Γ̆

s(γ, γ′)g(γ)g(γ′) (6.8)

s.t.
∑
γ∈Γ̆

g(γ) = 1 (6.9)

c̄(γ, γ′)g(γ)g(γ′) = 0 ∀ γ, γ′ ∈ Γ̆ , (6.10)

where we set c̄(γ, γ′) = 1 if the two matches are incompatible, and c̄(γ, γ′) = 0 otherwise.
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Eq. (6.10) ensures that incompatible matches will not appear in any local optimum.

The transition to a maximization problem has a regularizing effect on its optima, as
there are no trivial maximizers meeting the constraints in this case.

Remark 2
Any local solution to Problem 1 satisfies the key requirements of a multi-way correspon-
dence: 1) it is always cycle-consistent (by construction of Γ̆); 2) shape points are activated
at most once by the correspondence (by Eq. (6.10)); and 3) partial matches are allowed
(by Γ̆ and Eq. (6.9)).

A note on symmetries. In case the shapes in the collection carry bilateral symmetries,
mapping either side would in principle yield the same optimum for Problem 1. We deem
correct such symmetric solutions as long as they remain consistent across all pairs of
shapes (see Fig. 6.4).

6.1.3 Numerical optimization
Problem 1 is a non-convex quadratic program with O(|Γ̆|) variables; as such, it is in
general very difficult to solve and to give guarantees on the optimality of the solution. In
this Section we develop an efficient strategy to get good local solutions to this problem.
The general strategy is to decompose it into two sub-problems: a robust process to get
good match candidates (Section 6.1.3), and a restriction of the original problem to the
reduced feasible set (Section 6.1.3).

First sub-problem (reducing the feasible set)

The first sub-problem is aimed at reducing the size of the feasible set Γ̆ to a smaller subset
of “stable” candidates Λ ⊂ Γ̆. Then, we will directly optimize Problem 1 over the reduced
feasible set Λ.
Outline. The general idea behind our formulation is that, given a collection of shapes, it
is relatively easy and inexpensive to solve for one single multi-way match between them.

(a) (b)

Figure 6.4: (a) Incorrect correspondence due to inconsistent handling of the symmetry.
(b) Even if the solution is not orientation-preserving, symmetries are treated consistently.
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Figure 6.5: Outlier shapes are automatically excluded by our approach, as they do not find
support from the other shapes in the collection. Note that the human shapes appearing in
this example come from different datasets (TOSCA, SCAPE, SHREC’14). A subset of
all matches is shown.

Specifically, we seek for a multi-way match γ ∈ Γ̆ that maximizes a measure of point-
wise similarity across several shapes, hence taking advantage of the stability induced by
the whole shape collection. The final goal is to keep in the feasible set only multi-way
matches maximizing this measure of similarity, since they are expected to be accurate and
stable against outliers, as shown in Fig. 6.5.

This problem can be formulated as a series of quadratic programs with sparsity con-
straints (Eq. (6.11)), each yielding a multi-way match γ ∈ Λ. Note that mapping con-
straints are imposed such that only cycle-consistent matches are allowed to be local op-
tima.

Solving for a single multi-way match. Assume for simplicity that |Si| = N for all
i = 1, . . . , n. Further, let us be given a point-wise similarity function τ : Sk × S` → R+,
measuring the similarity of some descriptor defined at shape points (an example is given
in section 6.1.4). Note that this function is not the same as the one defined in Eq. (6.7),
which instead measures the similarity between multi-way matches.

We introduce the vector x ∈ [0, 1]nN , representing a probability distribution over all
points in

⋃
i Si. Then, consider the L1-regularized non-convex quadratic program:

max
x≥0

x>Ax s.t. x>1 = 1 . (6.11)
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Figure 6.6: Our matching pipeline. First sub-problem (from left): Given a collection
of shapes as input, a set Q of queries are generated (e.g., by farthest point sampling in
the joint WKS space); we then compute distance maps (shown here as heat maps over
the shapes) in descriptor space from each shape point to each query qk ∈ Q, and keep
the vertices having distance smaller than a threshold; finally, a single multi-way match
is extracted by solving problem (6.11). Second sub-problem: The multi-way matches
extracted in the previous step are compared using a measure of metric distortion; the final
solution (in orange) is obtained by solving problem (6.13) over the reduced feasible set.

Here, matrix A is a symmetric similarity matrix:

A =


0 S1,2 · · · S1,n

S1,2 0 · · · · · ·
...

... 0 Sn−1,n

S1,n ... Sn−1,n 0

 , (6.12)

where each symmetric block Sk,` ∈ RN×N contains the similarity values between the
points in Sk and S`, according to function τ . The reason for the zero blocks along the
diagonal will become clear with Theorem 1. Note that the matrix above is not related to
the block matrix appearing in [60, 115], which instead represents a collection of pairwise
maps (ideally permutations).

The key result of this Section is that the support of any local maximizer to the problem
above (i.e., the set of points for which xi 6= 0) is guaranteed to be a single partial multi-
way match γ ∈ Γ̆ between the shapes in the collection, as we state in the following
theorem.

Theorem 1. Let x be a strict local maximizer of problem (6.11), where A = A> and
Aii = 0 for all i = 1, . . . , nN . Then, Aij > 0 for all i, j such that xi 6= 0 , xj 6= 0.

According to Thm. 1, local solutions to (6.11) cannot simultaneously activate points
with zero similarity. This gives us a powerful means to restrict feasibility to solutions that
activate at most one point per shape: It is sufficient to set Aij = 0 whenever indices i and
j correspond to points on the same shape, i.e., matrix A must have zero blocks on the
diagonal.

Remark 3
Since local solutions to problem (6.11) are guaranteed to be multi-way matches, they are
always cycle-consistent by definition.
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A series of quadratic problems. Clearly, in order to construct the reduced set Λ ⊂ Γ̆
we need a way to enumerate the local optima of problem (6.11). We do so by solving a
sequence of problems of this form, each with a different data matrix (6.12). Specifically,
for each problem we compute similarities from a reference descriptor (or “query”) to all
shape points, and we discard all dissimilar points.

Suppose we are given a collection Q of queries to compare against. A family of
problems of the form (6.11) can then be generated as follows. Given a query qk ∈ Q, for
each shape Si ∈ C we only consider the vertices p ∈ Si such that τ(p, qk) > ξ for some
threshold ξ > 0. In other words, each query selects a different subset of vertices from
each shape; since we can generate and solve as many problems (6.11) as there are queries
qk, we can proceed constructively and store each solution in our reduced feasible set Λ,
which will have size |Λ| = |Q|.

Note that each of these problems will be quite small, since the number N ′ of shape
points that are similar to each query is significantly smaller than the total number of
points N . We refer to Sec. 6.1.4 for an empirical evaluation. We also note that this
approach is different from previous approaches which require pairwise maps as input
or which require geometrically consistent samples to be pre-selected across the shapes
[60, 115, 116, 166, 190].
Example. Suppose we are given a shape descriptor function f :

⋃
i Si → Rm, providing

an embedding of all shapes in Rm. The query setQ can be defined implicitly by a k-means
clustering or by farthest point sampling directly in Imf .
Numerical solution. It is worthwhile to note that problems of this form have a natural
interpretation from the point of view of evolutionary game theory [23, 182]. We leverage
this connection by adopting the infection-immunization dynamics algorithm [186], an
efficient local optimizer with convergence guarantees that exploits the specific structure
of problem (6.11).

Second sub-problem (correspondence)

We are now ready to solve a smaller version of Problem 1 by replacing Γ̆ with the reduced
set Λ. We proceed by directly rewriting the problem in matrix notation.

Suppose we solved |Λ| = M instances (one per query) of problem (6.11), hence
we have partial multi-way matches γi for i = 1, . . . ,M at our disposal. We can now
compose the similarity terms s(γi, γj) into a similarity matrix B ∈ RM×M

+ such that
Bij = Bji = s(γi, γj), and we set Bii = 0 for all i = 1, . . . ,M by Theorem 1. The
correspondence function g can simply be represented by a vector g ∈ [0, 1]M . Similarly
to the previous case, we arrive at the quadratic program:

max
g≥0

g>Bg s.t. g>1 = 1 . (6.13)

Note that the mapping constraints (6.10), which impose that incompatible matches cannot
be part of the final solution, are already incorporated in the data matrix B. This is because
we set Bij = 0 whenever γi and γj are incompatible (by Eq. (6.7)).
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Figure 6.7: Symmetries. In order to favor symmetry-consistent solutions (Fig. 6.4), we
assume to be given left-right maps for the shapes in the collection, associating each shape
point to either side. The maps are then used to augment the shape descriptors. While there
are robust approaches to perform this task [144], for our purposes it is enough to have a
rough estimate so as to avoid obviously inconsistent solutions.

A problem of this form for the simple case of two shapes was previously considered
in [182]. Local solutions to (6.13) (obtained again with [186]) will be accurate, although
sparse. However, since the candidate set Λ is likely to contain good match hypotheses
due to the previous optimization, there is hope to elicit a larger correspondence from it.
To this end, we consider three simple approaches:
Grouped sparse. Following [21,187], we proceed by iteratively solving updated versions
of problem (6.13). Whenever a local optimum is reached, the matches resulting from the
optimizer g are stored, and the data matrix is modified by setting Bi? = B?i = 0 for
all i such that gi 6= 0. By Theorem 1, this amounts to reducing the feasible set to the
remaining candidates in Λ. The iterations stop when the objective g>Bg falls below a
certain threshold.
Spectral relaxation. A different way to approach the problem consists in replacing the
L1 constraint g>1 = 1 by a L2 counterpart g>g = 1. This type of constraint acts as
a Tikhonov regularizer, which tends to yield denser solutions for this kind of problems.
A global optimum can then be computed by Rayleigh’s ratio as the principal eigenvec-
tor of B. This comes at the price of sacrificing the mapping constraints guaranteed by
Theorem 1, which must be imposed by a post-processing of the obtained solution [137].
Elastic net. Finally, one may introduce a form of controllable sparsity into the prob-
lem by elastic net regularization [181]. In this case, the L1 constraint is replaced by the
convex combination (1−α)g>1 +αg>g = 1, where parameter α ∈ [0, 1] allows to tran-
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Data: Shape collection C of n shapes
Result: Partial multi-way correspondence Γ among the shapes in C
pre-processing (Sec. 6.1.4);
Q← generated as in the Example of Sec. 6.1.3;
Λ← ∅;
forall the q ∈ Q do

find points p ∈ Si s.t. τ(p, q) > ξ for i = 1, . . . , n;
construct similarity matrix A as in Eq. (6.12);
x← solve problem (6.11) using [186];
γ ← support of x;
update Λ← Λ ∪ {γ};

end
construct similarity matrix B as in Sec. 6.1.3;
g← solve problem (6.13) “grouped” as in Sec. 6.1.3;
Γ← support of g;

Algorithm 1: Full pipeline of our method for consistent partial matching of shape col-
lections.

sition smoothly from a formulation equivalent to (6.13) (hence sparse) to a purely spectral
solution (denser).

In Fig. 6.8 we show a full comparison of the three alternatives on the TOSCA dataset,
using the cumulative error measure defined in Sec. 6.1.4. Finally, the main steps describ-
ing our matching pipeline are given in Algorithm 1 and Fig. 6.6.

Complexity and scalability

We conclude the theoretical part with a complexity analysis of our method. Suppose our
collection C is made of n shapes, each shape has N points, and M is the number of
queries.

For a single query, computing the similarity matrix A takes O((nN)2) operations.
In practice, since for each query we have N ′ � N , this is a fast operation of the
order O((nN ′)2). Optimization of problem (6.11) using evolutionary dynamics [186]
is a O(nN ′) step. The complexity of the first sub-problem (generation of Λ) is thus
O(M · (nN ′)2).

Next, constructing matrix B is a O(M2) operation; this also involves computing
geodesic distances among all points in Λ, which can be done efficiently via fast march-
ing [233]. Since optimizing problem (6.13) is a O(M) process, the overall complexity of
the second sub-problem is O(M2). Note that in all our experiments we have once again
M � N , hence this step of the pipeline is typically very fast. We refer to Sec. 6.1.4 for
an experimental evaluation.
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Figure 6.8: Comparison between different numerical approaches to solve problem (6.13).
Left: Matches visualized on two scanned shapes from the SHREC’14 dataset, extracted
from a multi-way correspondence of length 7; the spectral relaxation yields 43 matches (in
green), while the elastic net with α = 0.7 only 11 matches (in red), although less noisy.
Right: Quantitative comparison on the entire TOSCA dataset; the iterated L1 approach
provides the best combination of size and accuracy.

6.1.4 Experimental results and applications

We performed a wide range of experiments on several benchmarks, namely: TOSCA [46],
SCAPE [24], KIDS [184], and SHREC’14 [173]. These datasets consist of multiple
classes of nearly-isometric shapes, with some intra-class variation in the case of KIDS
and SHREC’14. All datasets with the exception of SHREC’14 come with ground-truth
correspondences within each category. In all the experiments, we ran our matching algo-
rithm using M = 500 queries in descriptor space.
Pre-processing. WKS descriptors [26] are precomputed for all the meshes. Where not
specified otherwise, in our experiments we run the matching pipeline onN = 300 farthest
samples per shape (using the Euclidean metric). This is done in order to avoid solutions
that unduly aggregate in small regions. Note that we do not assume samples to be com-
patible across shapes as in [115], hence some local error in the computed matches is to be
expected.
Error measure. We quantify the quality of the correspondence by using the same mea-
sure of error defined in [115]. Specifically, in our plots we show the percent of matches pe
which have geodesic error (i.e., distance from the ground-truth) smaller than a threshold
e. This cumulative distribution is computed and aggregated over all the pairwise matches
induced by the obtained multi-way correspondences. The geodesic error is normalized by
the square root of the area of each shape. As in [115], we also report values for p0.16 and
p0.02, which respectively capture the global and local accuracy of the matching method.
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Figure 6.9: Sensitivity experiments on a subset of TOSCA. Here we plot the error curves
under different choices of point-wise similarity parameter σ (left), and metric distortion
parameter µ (right). In both graphs, the resulting number of multi-way matches is reported
in parentheses.

Sensitivity analysis

The first set of experiments is aimed at analyzing the sensitivity of our method to different
parametrizations. In order to reduce overfitting, these experiments are performed on a
representative subset of the TOSCA dataset, consisting of the victoria (12 shapes) and cat
(11 shapes) classes.
Point-wise similarity. We measure the similarity between points on different shapes by
the similarity between their associated WKS descriptors. Each signature is computed
on the shape samples using 100 eigenpairs, 100 energy levels and variance equal to 6.0
(default parameters as provided by the authors). Given two points p ∈ Sk and q ∈ S`, we
define their similarity by the Gaussian weight

τ(p, q) = e−
1
σ2
‖WKS(p)−WKS(q)‖22 . (6.14)

In Fig. 6.9 (left) we plot the error curves under different choices of σ ∈ R. Note that
smaller values of σ tend to yield more accurate solutions. The choice of σ also has an
effect, although not very pronounced, on the final number of multi-way matches (reported
in parentheses).
Metric distortion. As described in Eq. (6.7), penalizing the metric distortion of a pair
of multi-way matches is done by means of a control parameter µ. As shown in Fig. 6.9
(right), changing the value of µ allows to control the size/accuracy trade-off of the final
correspondence: as µ is increased, distorted matches are tolerated and included in the
solution. Further illustration of this behavior is given in Fig. 6.10, where we show how the
worst-case metric distortion over the shape collection can be bounded by an appropriate
choice of µ. The choice of this upper bound is ultimately driven by the application; e.g.,
it makes sense in shape exploration applications (see Sec. 6.1.4) to require more accurate,
although sparser matches in order to obtain a better clustering.
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Figure 6.10: Effect of parameter µ on the metric distortion term of Eq. (6.7). Increas-
ing the value of µ makes geometric validation more tolerant to distorted matches. In this
real example on the SCAPE dataset, the colored regions show the admitted metric distor-
tion for a pair of multi-way matches at different values of µ. An optimal value for this
parameter can be chosen such that a prescribed metric distortion is not exceeded (e.g.,
constrained to the orange area).

In a separate set of experiments, we investigate the effect of different similarity func-
tions s. Namely, we consider both the Gaussian function of Eq. (6.7) as well as a modified
version of it, given by replacing the worst-case cost of Eq. (6.3) by:

ε2(γ, γ′) =
∑

pk,p`∈γ
p′k,p

′
`∈γ

′

|dk(pk, p′k)− d`(p`, p′`)|2 . (6.15)

Following [182], we also include a relative (Lipschitz) notion of similarity in the compar-
ison, defined as:

s(γ, γ′) =
mink dk(pk, p

′
k)
µ

maxk dk(pk, p′k)
µ
. (6.16)

Since a fixed value of µ will in general scale differently in the three cases, each vari-
ant is parametrized so as to yield 30 multi-way matches on average. The results of this
experiment are summarized in Table 6.1.

Comparisons

We compare our method with MatchLift, the convex relaxation approach of Chen et
al. [60]. This method represents, to the best of our knowledge, the state of the art for this
class of problems. In Fig. 6.11 we report the results on the TOSCA and KIDS datasets.
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L∞ L2 Lipschitz
Local (p0.02) 26.81 16.01 20.04
Global (p0.16) 96.21 95.49 91.05

Table 6.1: Comparison between different metric distortion measures on a subset of
TOSCA. The best results (in bold) are obtained when we penalize the worst-case ab-
solute metric error. Interestingly, there is no clear advantage in using a relative error as
opposed to its absolute counterpart.

Figure 6.11: Left: Comparison between our method and the state-of-the-art method
of [60] on the TOSCA and KIDS datasets; the quality of the input maps of MatchLift
is also reported. Right: Comparison of execution times. In all the comparisons, the two
methods generated a comparable amount of matches.

Note that MatchLift did not previously appear in these benchmarks; in the same figure
we also report a runtime comparison of the two methods on collections of increasing size.
Finally, in Table 6.2 we show additional comparisons with the methods described in [115]
and [116] on the TOSCA and SCAPE datasets.

We remind the reader that all methods included in the comparisons, except for ours,
require pairwise maps to be given as input (also evaluated in the comparisons), hence

Ours [115] [115]in [116]
TOSCA (p0.16) 97.7 100 84.1 97.2
SCAPE (p0.16) 95.9 99.1 83.2 99.3
TOSCA (p0.02) 21.9 35.7 - 38.4
SCAPE (p0.02) 50.6 42.1 - 44.4

Table 6.2: Comparisons with other recent methods in terms of global (p0.16) and local
(p0.02) accuracy. The in column reports the quality of the input maps [127].
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Figure 6.12: Joint region matching on SCAPE (only a subset shown). The optimization
process automatically excluded shape regions having incompatible segmentations with
respect to the rest of the collection (e.g., two segments per arm). Our pipeline took 2 sec.
to produce these results.

acting more like global regularizers rather than “pure” multiple shape matching methods.
Also note that our method was not tuned to perform well in the comparisons, as our
sensitivity analysis was only executed on a small subset of TOSCA.

Region matching

Our method can be trivially modified to work with region-wise rather than point-wise cor-
respondences, assuming a (possibly noisy) segmentation is provided for the input shapes.
The modification boils down to define a proper similarity measure among regions. To
this end we use the simple Gaussian score of Eq. (6.14), where the cost term is replaced
by the L2 distance between the area-weighted average WKS of each region. Regions are
computed by consensus segmentation [183], using the code provided by the authors.

Note that since most shapes typically contain only 5 to 15 regions, a full similarity
matrix A can be constructed which encodes the pairwise similarities among all regions
in the collection (i.e., we do not need to define queries). We can then solve the resulting
problem (6.11) iteratively, each time reducing the feasible set by removing solutions from
the past iterates (this is done by putting rows and columns of A to zero, as per Theorem 1).
In Fig. 6.12 we show some qualitative results produced by this simple procedure when
applied to a noisy version of SCAPE, in which 10 random outlier shapes from TOSCA
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Figure 6.13: An example of shape retrieval. The query shape is matched jointly to the
shapes in the database, forming a cluster with the shapes from the same class.

were introduced.

Other applications

Our approach is robust to the presence of outliers by design, and we can always extract
an accurate solution as long as the outliers do not have a structure.

Consider the example in Fig. 6.1. As problem (6.11) is iteratively solved, the candidate
set Λ is updated with matches that put the horse parts into correspondence, in addition
to matches that only relate the human bodies. The subsequent optimization of (6.13)
then extracts two intra-similar clusters of matches, one for each semantic group. In this
case, it is clear that there is technically no reason to treat either of the two solutions as
noise. Consider now a collection of shapes of a given class, which has been corrupted
by introducing other shapes (Fig. 6.5). Since the extra-class objects fail to form stable
matches with any other object in the collection, they will not appear in the final solution.
This key feature of our framework suggests, among others, two applications:
Shape exploration and clustering. Consider once again the example in Fig. 6.5, and
suppose both outlier shapes actually belong to the same class. This scenario can be seen
as an instance of structured noise – in fact, we now have two semantic classes forming
intra-similar groups, and it would be desirable to separate them into two disjoint clusters.
We do so by a simple iterative procedure: 1) run Algorithm 1 on the whole collection;
2) relabel the resulting multi-way correspondence into clusters, based solely on the shape



6.1. Consistent Partial Matching of Shape Collections via Sparse Modeling 109

indices; 3) remove the matched shapes from the collection and repeat. Note that the
clustering step is especially efficient, as it boils down to detecting connected components
in a graph where each node represents a shape, and an edge exists between two nodes
whenever there exist (at least 3) matches connecting the respective shapes. Running this
procedure on the TOSCA dataset gives the results reported in Fig. 6.15.
Shape retrieval. The approach described above can be directly applied to shape retrieval
applications. Given a query shape Sq /∈ C, the task is to detect the subset Cq ⊆ C contain-
ing shapes that belong to the same class as Sq. This can be done by seeking a multi-way
correspondence on the augmented set C ∪{Sq}, and by retaining the cluster of shapes that
contains Sq in the final solution (see Fig. 6.13).

Runtime

One of the key advantages of our matching method lies in its computational efficiency.
In Fig. 6.14 we show a breakdown of the runtimes across the whole pipeline. Observe
that the first optimization can be easily parallelized (we used 7 cores in our tests), as it
amounts to solving independent instances of problem (6.11), one problem per query.

Our method takes around 1 min. 30 sec. to match the entire SCAPE collection when
we use 300 samples per shape. Further runtime comparisons with the method of [60]
are given in Fig. 6.11. All experiments were coded in Matlab/C++ and run on an Intel
Core i7 4900MQ with 32GB memory, using publicly available code for [60] and for the
optimization step [186].
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Figure 6.14: Breakdown of our computational times over the SCAPE dataset. Left: Run-
time as a function of a subset of shapes in the collection, with 300 samples per shape. The
first and second optimizations refer to solving problems (6.11) and (6.13) respectively.
The runtime for the first problem is accumulated over M = 500 queries. Right: Runtime
as a function of farthest samples per shape, over the entire collection (71 shapes). Note
the different scales among the two graphs.
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Figure 6.15: An example of shape clustering of the TOSCA dataset, obtained by running
the matching algorithm followed by extraction of connected components. Classes are
encoded by color; note how all humans except for one victoria pose (in black) have been
clustered together. Total running time is around 1 min. 30 sec.

6.1.5 Limitations and future works
Our approach does have a few shortcomings. While the sparse model allows to success-
fully deal with partial similarity at different levels, this partiality is not easily controllable
and it might well be that incomplete matches are extracted even within outlier-free collec-
tions. This is related to our necessity to establish a similarity criterion that acts globally
on the whole collection, hence driving longer, but less globally-similar matches to be cut
out from the solution even if correct. Enforcing specific shapes to partake in the final
solution is a possible direction of future work.
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6.2 Partial Functional Correspondence

In this section, we propose a method for computing partial correspondence between non-
rigid shapes extending the functional correspondence framework to deal with partial cor-
respondence. Specifically, we consider a scenario of matching a part of a deformed shape
to some full model. Such scenarios are very common for instance in robotics applications,
where one has to match an object acquired by means of a 3D scanner (and thus partially
occluded) with a reference object known in advance. We use an explicit part model over
which optimization is performed as in [45, 47], as well as a regularization on the spectral
representation of the functional correspondence accounting for a special structure of the
Laplacian eigenfunctions as a result of part removal. Theoretical study of this behavior
based on perturbation analysis of Laplacian matrices is another contribution of our work.

The section is organized as follows. In 6.2.1, we review the basic concepts in the
spectral geometry and describe the functional correspondence approach. We then study
the behavior of Laplacian eigenfunctions in the case of missing parts, motivating the
regularizations used in the subsequent sections in 6.2.2. Finally, before presenting the
experimental results in 6.2.5, in 6.2.3 we introduces our partial correspondence model,
and describes its implementation details in 6.2.4.

6.2.1 Spectral Geometry

We model shapes as compact connected two-dimensional Riemannian manifoldsM, pos-
sibly with boundary ∂M. Given f, g : M → R some real scalar fields on the man-
ifold, we define the standard inner product 〈f, g〉M =

∫
M f(x)g(x)dx, where integra-

tion is done using the area element induced by the Riemannian metric. We denote by
L2(M) = {f :M→ R | 〈f, f〉M <∞} the space of square-integrable functions onM.

The intrinsic gradient∇Mf and the positive semi-definite Laplace-Beltrami operator
∆Mf = −divM(∇Mf) generalize the notions of gradient and Laplacian to manifolds.

Figure 6.16: Partial functional correspondence between two pairs of shapes with large
missing parts. For each pair we show the matrix C representing the functional map in the
spectral domain, and the action of the map by transferring colors from one shape to the
other. The special slanted-diagonal structure of C induced by the partiality transformation
is first estimated from spectral properties of the two shapes, and then exploited to drive
the matching process.
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The Laplace-Beltrami operator admits an eigen-decomposition

∆Mφi(x) = λiφi(x) x ∈ int(M) (6.17)
〈∇Mφi(x), n̂(x)〉 = 0 x ∈ ∂M, (6.18)

with homogeneous Neumann boundary conditions (6.18) if M has a boundary (here n̂
denotes the normal vector to the boundary), where 0 = λ1 < λ2 ≤ . . . are eigenvalues
and φ1, φ2, . . . are the corresponding eigenfunctions (or eigenvectors). The eigenfunctions
form an orthonormal basis on L2(M), i.e., 〈φi, φj〉M = δij , generalizing the classical
Fourier analysis: a function f ∈ L2(M) can be expanded into the Fourier series as

f(x) =
∑
i≥1

〈f, φi〉Mφi(x) . (6.19)

Functional correspondence. Let us be now given two manifolds, N and M. Ovs-
janikov et al. [171]roposed modeling functional correspondence between shapes as a
linear operator T : L2(N ) → L2(M). One can easily see that classical vertex-wise
correspondence is a particular setting where T maps delta-functions to delta-functions.

Assuming to be given two orthonormal bases {φi}i≥1 and {ψi}i≥1 on L2(N ) and
L2(M) respectively, the functional correspondence can be expressed w.r.t. to these bases
as follows:

Tf = T
∑
i≥1

〈f, φi〉Nφi =
∑
i≥1

〈f, φi〉NTφi

=
∑
ij≥1

〈f, φi〉N 〈Tφi, ψj〉M︸ ︷︷ ︸
cij

ψj , (6.20)

Thus, T amounts to a linear transformation of the Fourier coefficients of f from basis
{φi}i≥1 to basis {ψi}i≥1, which is captured by the coefficients cij . Truncating the Fourier
series (6.20) at the first k coefficients, one obtains a rank-k approximation of T , repre-
sented in the bases {φi, ψi}i≥1 as a k × k matrix C = (cij).

In order to compute C, Ovsjanikov et al. [171]ssume to be given a set of q corre-
sponding functions {f1, . . . , fq} ⊆ L2(N ) and {g1, . . . , gq} ⊆ L2(M). Denoting by
aij = 〈fj, φi〉N and bij = 〈gj, ψi〉M the k × q matrices of the respective Fourier coeffi-
cients, functional correspondence boils down to the linear system

CA = B . (6.21)

If q ≥ k, the system (6.21) is (over-)determined and is solved in the least squares sense to
find C.

Structure of C. We note that the coefficients C depend on the choice of the bases. In
particular, it is convenient to use the eigenfunctions of the Laplace-Beltrami operators of
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N andM as the bases {φi, ψi}i≥1; truncating the series at the first k coefficients has the

effect of ‘low-pass’ filtering thus producing smooth correspondences. In the following,

this will be our tacit basis choice.

Furthermore, note that the system (6.21) has qk equations and k2 variables. However,

in many situations the actual number of variables is significantly smaller, as C manifests a

certain structure which can be taken advantage of. In particular, ifN andM are isometric

and have simple spectrum (i.e., the Laplace-Beltrami eigenvalues have no multiplicity),

then Tφi = ±ψi, or in other words, cij = ±δij . In more realistic scenarios (approxi-

mately isometric shapes), the matrix C would manifest a funnel-shaped structure, with

the majority of elements distant from the diagonal close to zero.

Discretization. In the discrete setting, the manifoldN is sampled at n points x1, . . . , xn

which are connected by edges E = Ei ∪ Eb and faces F , forming a manifold trian-

gular mesh (V,E, F ). We denote by Ei and Eb the interior and boundary edges re-

spectively. A function on the manifold is represented by an n-dimensional vector f =
(f(x1), . . . , f(xn))


. The discretization of the Laplacian takes the form of an n × n
sparse matrix L = −S−1W using the classical cotangent formula [84, 146, 176],

wij =

⎧⎪⎪⎨
⎪⎪⎩

(cotαij + cot βij)/2 ij ∈ Ei;
(cotαij)/2 ij ∈ Eb;
−∑

k �=i wik i = j;

0 else;

(6.22)

where S = diag(s1, . . . , sn), si =
1
3

∑
jk:ijk∈F sijk denotes the local area element at vertex

i, sijk denotes the area of triangle ijk, and αij, βij denote the angles ∠ikj,∠jhi of the

triangles sharing the edge ij (see Fig. 6.17).
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Figure 6.17: Discretization of the Laplace-Beltrami operator on a triangular mesh for

interior edges (green, left) and boundary edges (red, right).

The first k eigenfunctions and eigenvalues of the Laplacian are computed by perform-

ing the generalized eigen-decomposition WΦ = SΦΛ, where Φ = (φ1, . . . ,φk) is an
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n×k matrix containing as columns the discretized eigenfunctions and Λ = diag(λ1, . . . , λk)
is the diagonal matrix of the corresponding eigenvalues. The computation of Fourier co-

efficients is performed by a = Φ
Sf .

6.2.2 Laplacian eigenvectors and eigenvalues under partiality

When one of the two shapes has missing parts, the assumption of approximate isometry

does not hold anymore and a direct application of the method of Ovsjanikov et al. (i.e.,
solving system (6.21)) would not produce meaningful results. However, as we show in

this section, the matrix C still exhibits a particular structure which can be exploited to

drive the matching process.

We assume to be given a full shapeM and a part thereofN ⊂M. We further denote

byN =M\N the remaining vertices ofM. The manifoldsM andN are discretized as

triangular meshes with m and n vertices, respectively, and n̄ = m − n. The scenario we

consider in concerns the problem of matching an approximately isometric deformation

of part N to the full shape M (part-to-whole matching). Our goal is to characterize

the eigenvalues and eigenvectors of the Laplacian LM in terms of perturbations of the

eigenvalues and eigenvectors of the Laplacians LN and LN [159]. We tacitly assume that

homogeneous Neumann boundary conditions (6.18) apply.

LN

LN

LN

φ1 φ2 φ3

φ1 φ2 φ3

φ̄1 φ̄2 φ̄3

N

N

Figure 6.18: The eigenvalues and eigenvectors of a block-diagonal Laplacian LM are an

interleaved sequence of the eigenpairs from the two blocks LN and LN .
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Block-diagonal case

For the simplicity of analysis, let us first consider a simplified scenario in which N and
N are disconnected, i.e., there exist no links between the respective boundaries ∂N and
∂N . W.l.o.g., we can assume that the vertices inM are ordered such that the vertices in
N come before those inN . With this ordering, the m×m Laplacian matrix LM is block-
diagonal, with an n × n block LN and an n̄ × n̄ block LN . The (sorted) eigenvalues of
LM form a mixed sequence composed of the eigenvalues from LN and LN . Similarly, the
eigenvectors of LM correspond to the eigenvectors of the two sub-matrices, zero-padded
to the correct size (Fig. 6.18).

Structure of C under partiality. Suppose we are given the first k Laplace-Beltrami
eigenvalues of the full shape M and its part N . Since the spectrum of LM is an inter-
leaved sequence of the eigenvalues of LN and LN , only the first r < k eigenvalues of
LN will appear among the first k eigenvalues of LM. The remaining k − r eigenvalues
of LN will only appear further along the spectrum of LM (see Fig. 6.21 for an example
where k = 50 and r = 21). The same argument holds for the associated eigenfunctions,
as illustrated in Fig. 6.19: if φi is a (restricted) eigenvector of LN , then LM also has an
eigenvector ψj such that φi = Tψj , where T = (In×n, 0)> and i < j.

This analysis leads us to the following simple observation: the partial functional map
between N andM is represented in the spectral domain by the matrix of inner products
cij = 〈Tφi,ψj〉M, which has a slanted-diagonal structure with a slope r/k (see examples
in Figs. 6.16, 6.19 where this structure is manifested approximately). Consequently, the
last k − r columns of matrix C are zero such that r = rank(C). The value r can be
estimated by simply comparing the spectra of the two shapes, as shown in Fig. 6.21. Note
that this behavior is consistent with Weyl’s asymptotic law [235], according to which the
Laplacian eigenvalues grow linearly, with rate inversely proportional to surface area.

Perturbation analysis

We will now show that these properties still approximately hold when the Laplacian ma-
trix LM is not perfectly block-diagonal, i.e., whenN andN are joined along their bound-
aries. Roughly speaking, the main observation is that in this case as well the matrix C has
a slanted diagonal structure, where the diagonal angle depends on the relative area of the
part, and the diagonal ‘sharpness’ depends on the position and length of the cut.

We assume w.l.o.g. that within N the boundary vertices ∂N are indexed at the end,
while within N the boundary vertices ∂N are indexed at the beginning. Then, there is a
boundary band B = ∂N ∪ ∂N such that only the entries of the Laplacians LN and LN
between vertices in B are affected by the cut (Fig. 6.20).

We define the parametric matrix

L(t) =

(
LN 0
0 LN

)
+ t

(
PN P
P> PN

)
, (6.23)
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Figure 6.19: First ten eigenfunctions of a full shape M and two parts N1,N2 ⊂ M
with different surface area. All eigenfunctions of the partial shapes have a corresponding

eigenfunction ψi on the full shape for some i; the correspondence between eigenfunctions

follows from the correspondence between eigenvalues (see also Fig. 6.21). This is re-

flected in functional maps with different diagonal slopes, where the slope depends on the

area ratios of the two surfaces (by Weyl’s law).

where

PN =

(
0 0
0 DN

)
, PN =

(
DN 0
0 0

)
, P =

(
0 0
E 0

)
are matrices of size n×n, n̄× n̄, and n× n̄, respectively. Here DN and DN represent the

variations of the Laplacians LN and LN within nodes in ∂N and ∂N respectively, while

E represents the variations across the boundary. The parameter t is such that L(1) = LM,

LN

LN

tE

tE�

N

N

Figure 6.20: The matrix L(t) is obtained as a perturbation of the block-diagonal Lapla-

cian in the boundary band (shown in green).
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while for t = 0 we get back to the disconnected case of Fig. 6.18.
Also note that with the appropriate ordering of the vertices, the matrices DN and

DN will have a band-diagonal structure. In fact, a cut through an edge will affect the
values of the discrete Laplacian matrix L only at the entries corresponding to the vertices
at the extremities of the edge, and to the edges laying in the same triangle as the cut
edge. For example, looking at Fig. 6.17, a cut through edge (i, j) will affect the diagonal
entries lii and ljj as well as the off-diagonal entries lih, lik, ljh, and ljk. Note also that the
continuity of the cut implies that two of the four off-diagonal entries will be cut as well,
leaving no more than two affected edges on any side of the cut. As a result, the entries of
the Laplacian affected by the cut correspond to the nodes and edges in a path along the
boundary of the cut.

Theorem 2. Let LN + tPN = Φ(t)>Λ(t)Φ(t), where Λ(t) = diag(λ1(t), . . . , λn(t))
is a diagonal matrix of eigenvalues, and Φ(t) are the corresponding eigenvectors. The
derivative of the non-trivial eigenvalues is given by

d

dt
λi =

∑
v,w∈∂N

(PN )vwφivφiw = φ>i PNφi. (6.24)

Theorem 2 establishes that the (first-order) change in the eigenvalues of the partial
shape N only depends on the change in the Dirichlet energy of the corresponding eigen-
vectors along the boundary ∂N . In other words, the eigenvalues are perturbed depending
on the length and position of the cut. By virtue of this result, we can establish approxi-
mate correspondence between the eigenvalues of LN and a subset of the eigenvalues of
LM (which are now not exactly equal as in the block-diagonal case), required to estimate
the slope of C (see Fig. 6.21).

Theorem 3. Assume that LN has distinct eigenvalues (λi 6= λj for i 6= j), and further-
more, the non-zero eigenvalues are all distinct from the eigenvalues of LN (λi 6= λj for
all i, j). Let LN + tPN = Φ(t)>Λ(t)Φ(t), where Λ(t) = diag(λ1(t), . . . , λn(t)) is a
diagonal matrix of eigenvalues, and Φ(t) are the corresponding eigenvectors. Then, the
derivative of the non-constant eigenvector is given by

d

dt
φi =

n∑
j=1
j 6=i

φ>i PNφj
λi − λj

φj +
n∑
j=1

φ>i P φj

λi − λj
φj . (6.25)

Remark. If LN shares some eigenvalues with LN , the second sum in (6.25) would be
slightly different [159], but would still only have support over N .

We conclude from Theorem 3 that the perturbation associated with the partiality trans-
formation gives rise to a mixing of eigenspaces. The second summation in (6.25) has
support over N and thus provides the completion of the eigenfunction on the missing
part. The first summation in (6.25) is responsible for the modifications of the eigenvec-
tors over the nodes in N . Here the numerator has a term φ>i PNφj which, since DN is
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Figure 6.21: Neumann spectra of a full shape and a part of it. The eigenvalues of the
partial shape (in red) are approximately preserved under the partiality transformation (see
Theorem 2), and appear perturbed in the spectrum of the full shape (in blue). This simple
observation allows us to estimate the diagonal slope of the functional map relating the
two shapes; in this example, the slope is equal to 21/50.

band-diagonal and diagonally dominant, acts as a dot product of the eigenvectors over
the boundary band. This points to large mixing of eigenvectors with a strong co-presence
near the boundary. In turn, the term λi − λj at the denominator forces a strong mix-
ing of eigenvectors corresponding to similar eigenvalues. This results in an amplification
of the variation for higher eigenvalues, as eigenvalues tend to densify on the higher end
of the spectrum, and explains the funnel-shaped spread of the matrix C visible at high
frequencies (see Fig. 6.23).

Similarly to the case of eigenvalues, the eigenvectors are also perturbed depending on
the length and position of the cut. The variation of the eigenvectors due to the mixing
within the partial shape can be reduced either by shortening the boundary of the cut, or by
reducing the strength of the boundary interaction. The latter can be achieved by selecting a
boundary along which eigenvectors with similar eigenvalues are either orthogonal, or both
small. The boundary interaction strength can be quantified by considering the following
function:

f(v) =
n∑

i,j=1
j 6=i

(
φivφjv
λi − λj

)2

. (6.26)

Fig. 6.22 shows an example of two different cuts with different interaction strengths,
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10

20

Figure 6.22: Left: A model is cut in two different ways (red and green curves) with
cuts of same length. The off-diagonal dispersion depends mainly on the position of each
cut. Function f (6.26) is plotted over the model. Middle: Ground-truth functional map
between the complete model and the partial shape produced by the red cut (top), and
values of f along the cut (bottom). Right: Plots associated to the green cut.

where the function f is plotted on top of the cat model. The cuts plotted in the figure have
the same length, but one cut goes along a symmetry axis of the shape and through low
values of f , while the other goes through rather high values of f . This is manifested in the
dispersion of the slanted diagonal structure of the matrix C (larger in the second case).

6.2.3 Partial functional maps
As stated before, throughout this section we consider the setting where we are given a
full model shape M and another query shape N that corresponds to an approximately
isometrically deformed partM′ ⊂M.

Following [47], we model the partM′ by means of an indicator function v : M →
{0, 1} such that v(x) = 1 if x ∈ M′ and zero otherwise. Assuming that v is known,
the partial functional correspondence between N andM can be expressed as Tf = vg,
where v can be regarded as a kind of mask, and anything outside the region where v = 1
should be ignored. Expressed w.r.t. bases {φi}i≥1 and {ψi}i≥1, the partial functional
correspondence takes the form CA = B(v), where B(v) denotes a matrix of weighted
inner products with elements given by bij(v) =

∫
M v(x)ψi(x)gj(x)dx (when v(x) ≡ 1,

B is simply the matrix of Fourier coefficients defined in (6.20)).
This brings us to the problem we are considering, involving optimization w.r.t. corre-

spondence (encoded by the coefficients C) and the part v,

min
C,v
‖CA−B(η(v))‖2,1 + ρcorr(C) + ρpart(v) , (6.27)

where η(t) = 1
2

(tanh(2t− 1) + 1) saturates the part indicator function between zero and
one (see below). Here ρcorr and ρpart denote regularization terms for the correspondence
and the part, respectively; these terms are explained below. We use the L2,1 matrix norm



120 6. Shape matching under quasi-isometric deformations

(equal to the sum of L2-norms of matrix columns) to handle possible outliers in the cor-
responding data, as such a norm promotes column-sparse matrices. A similar norm was
adopted in [114] to handle spurious maps in shape collections.

Note that in order to avoid a combinatorial optimization over binary-valued v, we use
a continuous v with values in the range (−∞,+∞), saturated by the non-linearity η. This
way, η(v) becomes a soft membership function with values in the range [0, 1].

Part regularization. Similarly to [47, 177], we try to find the part with area closest to
that of the query and with shortest boundary. This can be expressed as

ρpart(v) = µ1

(
area(N )−

∫
M
η(v)dx

)2

(6.28)

+ µ2

∫
M
ξ(v)‖∇Mv‖dx ,

where ξ(t) ≈ δ
(
η(t)− 1

2

)
and the norm is on the tangent space. The µ2-term in (6.28)

is an intrinsic version of the Mumford-Shah functional [158], measuring the length of the
boundary of a part represented by a (soft) membership function. This functional was used
previously in image segmentation applications [225].

Correspondence regularization. For the correspondence, we use the penalty

ρcorr(C) = µ3‖C ◦W‖2
F + µ4

∑
i6=j

(C>C)2
ij

+ µ5

∑
i

((C>C)ii − di)2 , (6.29)

where ◦ denotes Hadamard (element-wise) matrix product. The µ3-term models the spe-
cial slanted-diagonal structure of C that we observe in partial matching problems (see
Fig. 6.23); the theoretical motivation for this behavior was presented in Sec. 6.2.2. Here,
W is a weight matrix with zeros along the slanted diagonal and large values outside (see
Fig. 6.23).

The µ4-term promotes orthogonality of C by penalizing the off-diagonal elements of
C>C. The reason is that for isometric shapes, the functional map is volume-preserving,
and this is manifested in orthogonal C [171]. Note that differently from the classical
case (i.e., full shapes), in our setting we can only require area preservation going in the
direction from partial to complete model, as also expressed by the µ1-term in (6.28). For
this reason, we do not impose any restrictions on CC> and we say that the matrix is
semi-orthogonal.

Finally, note that due to the low-rank nature of C we can not expect the product C>C
to be full rank. Indeed, we expect elements off the slanted diagonal of C to be close to

zero and thus C>C ≈
(

I 0
0 0

)
. The µ5-term in (6.29) models this behavior, where vector

d = (d1, . . . , dk) determines how many singular values of C are non-zero.
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Figure 6.23: Left: A partial functional map C from N toM is low-rank and manifests
a slanted-diagonal structure. Right: If the map is volume-preserving, then its full-rank
sub-matrix is semi-orthogonal. Observe the trail of small values along the diagonal of
C>C.

Remark. The fact that matrix C is low-rank is a direct consequence of partiality. This
can be understood by recalling from Eq. (6.20) that the (non-truncated) functional map
representation amounts to an orthogonal change of basis; since in the standard basis the
correspondence matrix is low-rank (as it contains zero-sum rows), this property is pre-
served by the change of basis.

In Fig. 6.23 we show an example of a ground-truth partial functional map C, illustrating
its main properties.
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Figure 6.24: An example of the matching process operating on two shapes from TOSCA.
The algorithm alternatingly optimizes over corresponding part (top row) and functional
correspondence (bottom row). Corresponding points between full and partial shape are
shown with the same color. This solution was obtained by using 30 eigenfunctions on
both manifolds.

Alternating scheme. To solve the optimization problem (6.27), we perform an alternat-
ing optimization w.r.t. to C and v, repeating the following steps until convergence:

C-step: Fix v∗, solve for correspondence C

min
C
‖CA−B(η(v∗))‖2,1 + ρcorr(C) . (6.30)

V-step: Fix C∗, solve for part v

min
v
‖C∗A−B(η(v))‖2,1 + ρpart(v) . (6.31)

A practical example of the alternating scheme applied to a pair of shapes is shown in
Fig. 6.24.

6.2.4 Implementation

Numerical optimization. We implemented our matching framework in Matlab/C++ us-
ing the manifold optimization toolbox [42]. Each optimization step was performed by the
method of nonlinear conjugate gradients. We initialize the alternating scheme by fixing
v∗ = 1 (a vector of m ones), C = W, and by optimizing over C. In all our experiments
we observed convergence in 3-5 outer iterations (around 5 mins. for a pair of shapes).
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Refinement. In order to account for noisy data, we also run a refinement step after each
C-step. Specifically, assume C∗ is a local optimum of problem (6.30). Then, we solve
again for C by setting µ3 = 0 and replacing the data term with ‖CΦ> −Ψ>Π‖F , where
Π is a left-stochastic binary matrix aligning columns of Ψ> with columns of C∗Φ>. By
doing so, we disregard descriptor preservation (encoded in the original data term) and
instead attempt to improve the alignment between the functional embeddings of the two
shapes. We construct Π by solving for each column independently, boiling down to n
nearest-neighbor searches in Rk. Then, we solve for the semi-orthogonal C minimizing
the new objective, and repeat the procedure until convergence. This refinement step can
be seen as a generalization to partial maps of the ICP-like technique found in [171].

Conversion to point-wise map. Given a functional map between partial shape N and
full shape M represented in the frequency domain as T = ΨCΦ>, we convert it to a
point-wise map f : N →M using the nearest-neighbor approach described in [171].

6.2.5 Experimental results
Datasets. As base models, we use shapes from the TOSCA dataset [46], consisting of 76
nearly-isometric shapes subdivided into 8 classes. Each class comes with a “null” shape
in a standard pose (extrinsically bilaterally symmetric), and ground-truth correspondences
are provided for all shapes within the same class. In order to make the datasets more chal-
lenging and avoid compatible triangulations, all shapes were remeshed to 10K vertices
by iterative pair contractions [95]. Then, missing parts were introduced in the following
ways:1

Regular cuts. The null shape of each class was cut with a plane at 6 different orienta-
tions, including an exact cut along the symmetry plane. The six cuts were then transferred
to the remaining poses using the ground-truth correspondence, resulting in 456 partial
shapes in total. Some examples are shown in Fig. 6.21 and 6.23.

Irregular holes. Given a shape and an “area budget” determining the fraction of area to
keep (40%, 70%, and 90%), we produced additional shapes by an erosion process applied
to the surface. Specifically, seed holes were placed at 5, 25, and 50 farthest samples
over the shape; the holes were then enlarged to meet the specified area budget. The total
number of shapes produced this way was 684. Examples of this dataset are shown in
Fig. 6.26 and 6.28.

Range images. We simulated range images by taking orthographic projections of the
original TOSCA shapes from different viewpoints. Each range image was produced via
ray casting from a regular grid with a resolution of 100× 150 pixels. Examples are shown
in Fig. 6.28.

Point clouds. Point clouds were generated by taking a subset of shapes from the first
two datasets. Each partial shape was then resampled uniformly to 1000 farthest points,

1The datasets together with code for our method are available for download at http://vision.
in.tum.de/data/datasets/partial.
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Figure 6.25: Correspondence quality of different methods evaluated using the Princeton
protocol on partial TOSCA shapes with regular cuts (solid) and irregular holes (dotted).

and the tessellation removed. See Fig. 6.28 for examples.
Where not specified otherwise, we use 120 random partial shapes for the first dataset

and 80 for the second, equally distributed among the different classes. Each partial shape
is then matched to the null shape of the corresponding class.

Error measure. For the evaluation of the correspondence quality, we used the Princeton
benchmark protocol [127] for point-wise maps. Assume that a correspondence algorithm
produces a pair of points (x, y) ∈ N ×M, whereas the ground-truth correspondence is
(x, y∗). Then, the inaccuracy of the correspondence is measured as

ε(x) =
dM(y, y∗)

area(M)1/2
, (6.32)

and has units of normalized length onM (ideally, zero). Here dM is the geodesic distance
onM. The value ε(x) is averaged over all shapesN . We plot cumulative curves showing
the percent of matches which have error smaller than a variable threshold.

Methods. We compared the proposed method with (full) functional maps [171], elas-
tic net [185], and the voting method of [189] using the code provided by the respective
authors.

Local descriptors. Due to the particular nature of the problem, in all our experiments
we only make use of dense, local descriptors as a data term. This is in contrast with the
more common scenario in which full shapes are being matched – thus allowing to em-
ploy more robust, globally-aware features such as landmark matches, repeatable surface
regions, and various spectral quantities [171]. In our experiments, we used the extrinsic
SHOT [216] descriptor, computed using 10 normal bins (352 dimensions in total). As op-
posed to [22, 177] which ignore points close to the boundary in order to avoid boundary
effects, in our formulation we retain all shape points.
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Figure 6.26: Correspondence quality (in terms of mean geodesic error, in % of diameter)
obtained by different methods at increasing levels of partiality. Other methods show sig-
nificant performance drop with increasing partiality, while the performance of our method
is nearly-constant.

Sensitivity analysis

We conducted a set of experiments aimed at evaluating the sensitivity of our approach to
different parametrizations. In order to reduce overfitting we only used a subset of TOSCA
(regular cuts), namely composed of the cat and victoria shape classes (20 pairs).
Rank. In the first experiment we study the change in accuracy as the rank of the functional
map is increased; this corresponds to using an increasing number of basis functions for
the two shapes being matched. For this experiment we compare with the baseline method
of Ovsjanikov et al. [171] by using the same dense descriptors as ours. For fair compar-
isons, we did not impose map orthogonality or operator commutativity constraints [171],
which cannot obviously be satisfied due to partiality. The results of this experiment are
reported in Fig. 6.27. As we can see from the plots, our method allows to obtain more
accurate solutions as the rank increases, while an opposite behavior is observed for the
other method.
Representation. Our method is general enough to be applied to different shape represen-
tations, as long as a proper discretization of the Laplace operator is available. In Fig. 6.28
we show some qualitative examples of correspondences produced by our algorithm on
simulated point clouds and depth maps. Here we use the method described in [30] to
construct a discrete Laplacian on the point clouds. This is traditionally considered a
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particularly challenging problem in robotics and vision applications, with few methods
currently capable of giving satisfactory solutions without exploiting controlled conditions
or domain-specific information (e.g., the knowledge that the shape being matched is that
of a human). These are, to the best of our knowledge, the best results to be published so
far for this class of problems.

Comparisons

We compared our method on the cuts and holes datasets (200 shape pairs in total) ; the
results are shown in Fig. 6.25. As an additional experiment, we ran comparisons against
[171] across increasing amounts of partiality. The rationale behind this experiment is to
show that, at little or no partiality, our approach converges to the one described in [171],
currently among the state of the art in non-rigid shape matching. However, as partiality
increases so does the sensitivity of the latter method. Fig. 6.26 shows the results of this
experiment.

Parameters for our method were chosen on the basis of the sensitivity analysis. Specif-
ically, we used k = 100 eigenfunctions per shape, and set µ1 = µ3 = 1, µ4 = µ5 = 103,
and µ2 = 102. The different orders of magnitude for the µ coefficients are due to the fact
that the regularizing terms operate at different scales. We also experimented with other
values, but in all our tests we did not observe significant changes in accuracy. Additional
examples of partial matchings obtained with our method are shown in Fig. 6.28.
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Figure 6.27: Correspondence quality obtained on a subset of TOSCA at increasing rank
(reported as labels on top of the curves). Note the opposite behavior of the baseline
approach and our regularized partial matching.
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range maps

Figure 6.28: Examples of partial functional correspondence obtained with our method
on meshes and point clouds from the proposed datasets. Notice how regions close to the
boundary are still accurately matched despite the noisy descriptors.

6.2.6 Limitations and future works

One of the main issues of our method concerns the existence of multiple optima, which is
in turn related to the presence of non-trivial self-isometries on the considered manifolds.
Since most natural shapes are endowed with intrinsic symmetries, one may leverage this
knowledge in order to avoid inconsistent matchings. For example, including a smoothness
prior on the correspondence might alleviate such imperfections and thus provide better-
behaved solutions. Secondly, since the main focus of this work is on tackling partiality
rather than general deformations, our current formulation does not explicitly address the
cases of topological changes and inter-class similarity (e.g., matching a man to a gorilla).

Bidirectional partiality

We are trying to extend our approach to deal with partiality in both directions. In this case
the correspondence is defined only over a part of both shapes: T : M̂ ⊂M → N̂ ⊂ N.
Although the general idea of preserving some eigenfunctions between the two bases is
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still valid, we lost some properties on the diagonal structure of the functional map. For in-
stance, since the overlapping part is now an unknown of our problem, we lost the ability to
retrieve the slope of the diagonal looking at the spectral properties of the decomposition.

From Fig. 6.30 we can see that the ground truth functional map between the two
partial shapes still preserves a diagonal structure, but with the decreasing of overlapping
part some rows of C vanish resulting in the corresponding element of the diagonal of C ′C
to be almost zero. Note also that the slope of the diagonal structure is not directly related
to the percentage of overlapping part.

As a first attempt, based of the observations in Fig. 6.30, we tried to modify the C-step
penalizing the L1 norm of the diagonal of C ′C and express the slope s of the W mask as
an optimization variable leading to the following formulation:

min
C,s
‖CA−B‖2,1 + µ1

∑
i6=j

(CTC)2
ij + µ2

∑
i

(CTC)ii + µ3

∑
i,j

(Cij(j − is)2(1 + s2))2(6.33)

In 6.29 we show some promising qualitative result of optimizing the C-step as in
equation 6.33.

Figure 6.29: Functional map obtained with 6.33 compared with the Ground Truth (left).
A function transferred using the obtained functional map (right).
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Figure 6.30: Example of partial matching between two parts of the same shape (Michael
in null pose). The functional map preserves its (slanted)diagonal structure and CTC is
still almost diagonal. We can notice that with the decrease of overlapping between the
two parts some rows of C vanish resulting in the corresponding values on the diagonal of
CTC to become zero.
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7
Related Work

In the last years there have been an increasing diffusion of devices to track users in their
pose and gestures. This is probably due to the investment of big game industry compa-
nies in the development of new input systems such, for instance, the tracked controllers
PlayStation Move(TM) and Wii Remote or the depth sensor Microsoft Kinect R©. As a con-
sequence the HCI community increased their effort on exploiting such devices to provide
users new paradigms to interact with computer systems in a more natural and intuitive
way.

7.1 Interactive tables

One thriving field of application of such techniques is the so called Interactive Tables.
they have proved to be a viable system to foster user participation and interest in many
shared environments, among which educational and cultural environments such as muse-
ums and exhibitions have a leading role. They favor interaction among users and induce
a sort of serendipitous discovery of knowledge by observing the information exploration
performed by other users. Their use has been analyzed and evaluated in entertainment as
well as in educational applications [25, 67, 113, 119].

Since their introduction in 1983 by Myron Krueger [132] a lot of experimental and
commercial products have been proposed. Among the early multitouch, multiuser surface
implementations DiamondTouchTM, an interactive table produced by Mitsubishi Electric
Research Labs (MERL), was able to recognize up to four different users by matching
signals captured at users’ touch by small antennas placed under the table surface with
receivers capacitively coupled to the users through their seats [81]. Such a user identifica-
tion technique, while effective and robust, is oriented to a structured collaboration among
the users and is not easily applied to highly dynamic environments like museums and
exhibitions.

A different technology is used in the Microsoft Surface R© interactive table, which uses
five cameras and a rear projector to recognizes finger gestures as well as objects equipped
with tags placed on the table surface. Gloves equipped with fiduciary tags are proposed
by Marquardt et al. [151] to identify both what part of the hand and which user caused the
touch.
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The Frustrated Total Internal Reflection (FTIR) technology [103], has received greater
attention as a cost effective technology, able to trace many users with high frequency
response; FTIR is based on infrared lateral illumination of a translucid surface, able to
reveal small deformations caused by finger pressure. The problem of matching touches
with users must, however, be solved by additional tracking systems based on analysis of
the user position with additional external cameras and is subject to errors [82].

In more recent years the widespread of mobile devices with rich interaction capabil-
ities has suggested to couple personal (small) and public (large) screens for enhanced
multiuser interaction. The personal devices are used both for input, allowing each of
several users to provide direct interaction and own information to a shared system, and
for output of local private information; the large shared screen acts as a collaboration
and information sharing environment, guided by the input provided by the single users
[36, 83, 86, 194, 226].

In [76] a technique that uses accelerometer data to build a gesture based control
schema was presented. In [208, 240] accelerometer data are given as input to SVM clas-
sifier to perform a semi-supervised gesture recognition.

In section 8.1 a setup of a large Interactive Table is presented. Computer vision tech-
niques for blob detection and accelerometers data are coupled in order to allow for multi-
ple users interaction in a both shared and personal environments.

7.2 Interactive Whiteboard
The term interactive whiteboard (IWB) usually refers to a wide class of hardware and
software bundles that share the common goal of serving as a technological substitute
for traditional blackboards (or flipcharts) in both offices and educational settings. Some
studies find them to be a key component to enhance the performance of both teachers
and learners in the classroom [141]. Other surveys are more critical, as they expose the
limits of current implementations [200, 201]. Anyhow, their increasing adoption spurs
the interest of both researchers and practitioners in the design of innovative supporting
technologies, interaction models and teaching practices [198].

Since the inception of the IWB concept by Xerox Parc in the early nineties [213,214],
its basic elements have remained substantially unchanged. Generally speaking, an IWB
is almost invariably made up of four components: a projection surface, a pointing de-
vice (that might well be the speaker’s fingers), a set of sensors (usually dependent on the
pointing device), and a set of software packages that enables different kinds of interaction
models. Given the increasing success with the adoption of such devices, it is not sur-
prising that a large amount of research has been recently investigating novel and diverse
approaches to their implementation.

When considering the projection technique to adopt, the possible choices are basically
two: front [44, 236] and rear [87] projection. The first approach is more prone to occlu-
sion, whilst the second is more demanding in terms of room space. However they are
basically identical from a human-machine interaction point of view.
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Most of the current research is in fact focused on the pointing approach, that is the
combination of hardware and software adopted to translate real-world actions into events
on the whiteboard plane. A classical solution is to borrow resistive [202, 249] or capaci-
tive [81, 125] technologies that are traditionally applied to touchscreen devices. Both of
these approaches require to embed a sensing layer in the projection surface, but while
resistive systems are able to detect both touches from objects and body parts, capacitive
solution are limited to fingers, which can be an advantage or disadvantage depending on
the intended usage. Other sensing technologies adopt electromagnetic sensors built in the
pen or embedded in the whiteboard surface [141]. All these sensing approaches are based
on reliable and proven technologies that offer a good accuracy and are easily scalable with
the size of the whiteboard. However, the need for embedding the sensing layer within the
projection surface contributes to high production costs. For this reason a great deal of
effort has been spent in the study of alternative sensing technologies. Among them the
most successful are based on an optical process, which allows to perform the pen (or fin-
ger) detection without a direct contact with the sensor. To this end, some widely accepted
methods include infrared LED or laser curtains [29, 160], where the position detection
happens by observing the occlusion produced with respect to LEDs or linear lasers il-
luminating an array of silicon photodiodes. Recently, even cheaper options have been
brought to the table by researchers, in particular exploiting off-the-shelf hardware such as
video cameras [135,175] or video game hardware such as Microsoft Kinect [54,250] and
Nintendo Wiimote [41, 230].

Regardless of the adopted technological substrate, the practical utility and the im-
pact of an interactive whiteboard are actually dependent on the associated control soft-
ware and the underlying interaction model. Most IWB implementations share a common
support for basic tasks, such as mouse emulation and on-screen writing. However, the
study of novel and advanced interaction models is a very active research topic. Some au-
thors propose to combine pen and touch-based interaction to better suit many presentation
needs [228].

It should be noticed, however, that essentially all the proposed paradigms are deeply
bound to original whiteboard metaphor. That is, the interaction happens almost entirely
in the 2D space of the surface (with the possible exception of a recently proposed model
where the proximity to the surface is exploited to enable additional gestures [212]). Still,
there is no technical or philosophical reason to not extend the degrees of freedom of
the system to the full 3D space, enabling an extended class of gestures and controls not
conceivable with the basic 2D paradigm. In our method we propose to treat the pen as
a 3D pointer, suggesting some possible applicatons and introducing a technical design to
effectively detect and track it.

A natural choice for the detection of the pen and for the estimation of its position in
the 3D space would be to use fiducial markers [34, 92], that is small 2D patterns that can
be used to recover 3D orientation both with monocular views or through triangulation.
Nevertheless, while marker-based approaches are widely adopted within augmented real-
ity applications, they exhibit several drawbacks with respect to our specific requirements.
Namely, printed markers are hard to detect and painful to recognize when the viewing



136 7. Related Work

angle is grazing, which fully happens as long as they are freely moved and rotated in 3D
space. Moreover, a quandary emerges between the will to keep markers suitably small
for the pointer to be ergonomic and the need for them to be large enough to be clearly
seen by cameras, especially considering the large shift range expected. Finally, special
care should be applied to avoid false positives originating from background clutter, which
abounds in any classroom.

In order to overcome these drawbacks, in section 8.2 we describe a specially crafted
setup made up of an active IR-emitting pointer and a camera network that reliably tracks
it and computes its pose in the 3D space. By using a set of different frequencies, the
system allows for many pointing devices to be used at once. The very same approach is
also tapped to notify the push of the buttons available on the pointers.

7.3 Viewer dependent rendering
Traditional stereoscopic displays assume the viewer to be standing at a specific location,
that is the same pose (relative to the screen) of the stereo camera pair that depicted the
scene (physically or virtually). Even for basic applications, such as movies or games,
this leads to visual inconsistencies as soon as the user moves his head. It is clear that the
3D illusion holds if and only if the optical system of the user exactly replicates the one
that produced the images, otherwise, the perceived scene would be distorted as the 3D
objects reconstructed (by the brain) will diverge from the original in size, position and
proportions (see Fig. 7.1). Additionally, from a perception point of view, the effect can be
further aggravated by the fact that points that would originally project into incident lines
of sight, would probably result skewed when observed from the wrong point of view.
The only viable solution to this limitation is to provide a rendering dependent on the user
position and on his interocular distance.

Viewer-dependent displays have been extensively proposed in recent scientific litera-
ture, since they offer many advantages. For starters, they are able to guarantee that the
viewed objects exhibit a correct size within the Euclidean space where the user resides,
thus allowing to interact with them naturally and to make meaningful comparisons be-
tween virtual and physical prototypes. Moreover, viewer-dependent rendering lets the
user walk around the scene, viewing it from different angles and enabling the same in-
spection dynamic that would be possible with a real object.

Such ideas are not new at all and have been widely developed in literature since
their early implementations with the first immersive virtual reality and CAVE environ-
ments [75, 79]. More recently, Harish and Narayanan [105] combine several independent
monitors arranged in a polyhedra to create a multiple-angle display and a fiducial marker
system to track the user pose. In their system the object is visualized as if it was inside the
solid space defined by the monitors. Garstka and Peters [97] used a single planar surface
to display non-stereoscopic content according to the pose of the user head obtained with a
Kinect sensor. A combination of Kinect devices and traditional range scanners have been
adopted in a very similar approach by Pierard et al. [174].
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(a) (b)

Figure 7.1: Left: The stereo inconsistency problem. Any stereo pair, when observed from
a location different from the position of the capturing cameras, will result in impaired
perception. Under these condition any observer will see an unpredictably distorted 3D
object. Right: images from a work by Artist Edgard Muller. The simulated perspective
only works if the observer stands in a very specific observation point (top).

It should be noted that, albeit implementing view-dependent solutions, the aforemen-
tioned approaches do not exploit stereoscopy. Stereo vision is exploited, for instance,
by Hoang et al. [111], that used standard head tracking techniques to allow slight head
movements when looking at a 3D scene on a monitor. The concept is very similar to the
non-stereoscopic technique proposed a few years earlier by Buchanan and Green [52]. In
those cases, while the correct projection is always offered to the user, he is not allowed to
inspect the object by moving around it.

In section 8.4 the tracking device described in section 8.3 is used to enhance a pair
of standard LCD shutter glasses, providing a setup to assemble a cheap viewer depen-
dent display with off-the-shelf acquisition and projection devices. In addition we propose
an evaluation method that can be used to assess the accuracy of similar view-dependent
systems from a calibration error and delay point of view.

7.3.1 Stereoscopic perception
Even when a good calibration of all the components is provided, it is not straightforward
to evaluate the perception of the users since other subjective aspects come into play.

The quality of visual perception depends on many factors, primarily depth percep-
tion and perspective rendering. Depth is primarily bound to binocular vision (stereopsis).
Studies in physiology and neurophysiology have investigated the perception of depth in
the real world under stationary and moving conditions; it is common experience to per-
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ceive depth even in absence of stereopsis through the motion parallax, i.e., by translating
the observer’s optical viewpoint and comparing the apparent shift of objects at different
distance [163, 164]. The depth perception is based on the analysis of the stimuli received
during pursuit eye movements; while the perception of the objects’ ordering sequence is
usually correct, the interpretation of the actual distances is generally inaccurate, unless
integrated by information coming from other types of interaction between the observer
and the world [88]. A first evaluation of the 3D perception in virtual reality applications
is discussed by Ware et al [232] in the Fish tank VR system, made of a stereo display
monitor and a mechanical sensor for tracking the user’s head position. The relations be-
tween mono and binocular view under different conditions are analyzed by Yang-Mao et
al [244] using a commercial see-through head mounted display. Quantitative (e.g., opti-
mal viewing distance) as well as qualitative factors (e.g. size vs. shape analysis) helping
a user to correctly perceive depth in a virtual scene are evaluated.

Except for [179, 244], little effort has been put to evaluate viewer dependant stereo-
scopic interfaces from a quantitative point of view. In section 8.5 we try to address the
lack of quantitative evaluation methods by introducing an objective evaluation procedure:
users are requested to measure with a physical ruler virtual object projected over a hor-
izontal display. This study is aimed mainly in assessing the difference between the role
of stereoscopic vision, compared to monocular vision, in the user perceptions of virtual
object dimensions.



8
User tracking in HCI applications

In many interaction models with a computer system there is need to identify the position
and the movements of a specific object to allow users to perform specific actions. In this
chapter we describe some techniques to retrieve the position of a known device over the
time and codify its movement with some specific input commands given to the system by
the users. Specifically we have developed and evaluated two ”active” devices, together
with the relative interaction paradigms, that allows the users to interact with the specific
application a natural and seamless way.

In the description of the proposed methods we assume to be given a calibrated camera
network, which is indeed the main goal of the methods described in the first part of this
thesis.

The first device, presented in section 8.1, was used as input in a large Interactive
Table exposed at the museum exhibition ”William Congdon in Venice (1948-1960: An
American Look”. Relating the tracked position of a mobile phone over a translucent
plane with its accelerometers data it is able, after a learning phase, to handle multiple
users in the selection of some interest points of a map and to stream the selected content
in both a private and shared display.

With the second device we aimed to continuously track the device position and orien-
tation (5 degrees of freedom). This allows the device to be used as a pointing device in an
Interactive Whiteboard. The novelty of our proposal lies in the time domain identification
of the device which allows to handle multiple users while maintaining a simple geometry
of the device. It is in fact composed only by two IR LEDs which are clearly visible and
distinguishable even with low end camera networks. It is presented in section 8.2, while
in section 8.3 this it is further improved in its accuracy exploiting its phase-shift properties
to correct the camera’s sync.

In section 8.4 we exploit this device to implement a position dependent stereoscopic
rendering and we propose a technique to assess the perspective error and the delay impact
in a general stereoscopic display setup. Finally, in section 8.5, we focus on the study of
the human perception of stereoscopic vision and the ability of such a system to supply a
coherent perception of spatial relation in the mixing of virtual scene and real background.
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8.1 Using Multiple Sensors for Reliable Markerless Iden-
tification through Supervised Learning

In many interaction models involving an active surface, there is a need to identify the

specific object that performs an action. This is the case, for instance, when interactive

contents are selected through differently shaped physical objects, or when a two-way

communication is sought as the result of a touch event. When the technological facility

is based on image processing, fiducial markers become the weapon of choice in order to

associate a tracked object to its identity. Such approach, however, requires a clear and un-

occluded view of the marker itself, which is not always the case. We came across this kind

of hurdle during the design of a very large multi-touch interactive table. In fact, the thick-

ness of the glass and the printed surface, which were required for our system, produced

both blurring and occlusion at a level such that markers were completely unreadable. To

overcome these limitations we propose an identification approach based on SVM that ex-

ploits the correlation between the optical features of the blob, as seen by the camera, and

the data coming from active sensors available on the physical object that interacts with

the table. This way, the recognition has been cast into a classification problem that can be

solved through a standard Machine Learning framework. The resulting approach seems

to be general enough to be applied in most of the problems where disambiguation can

be achieved through the comparison of partial data coming from multiple simultaneous

sensor readings. Finally, an extensive experimental section assesses the reliability of the

identification.

8.1.1 The context: a map based multiuser art browser
The art exhibition mentioned in the introduction provided an opportunity to design and

build three large interactive tables equipped with the standard set of input and output

devices such as cameras for blob detection and projectors for information display. While

a focused effort has been made in order to create a generic and reusable system, the design

Figure 8.1: A group of peo-

ple operating on the map

based multiuser art browser

described

Figure 8.2: Schematic representation of the components

of the proposed multiuser interactive table.
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Figure 8.3: (a) The feedback on cursor location. (b) A visual suggestion to move.

of the table hardware and software is still the result of requirements partly bound to the
interaction functions, partly imposed by the environment.

Interaction Model

Each table presents a high resolution diaphanous map of Venice (Fig. 8.2-2) printed on a
thick glass surface (Fig. 8.2-1). A total of three tables has been built. Each one portraits
a different period of the city history. The well-known lithography made by Jacopo De’
Barbari [188] that represents an aerial view of the island of Venice has been selected
to represent the XVI century. The Napoleonic cadastral map was chosen to provide an
overview of the city during the XVIII century. Finally, a satellite view has been used to
represent the modern era.

The required interaction is based on placing or moving on the table objects represent-
ing the virtual visitor position in the town. These objects, that in the following will be
referred to as cursors, are smartphones that are equipped both with a display and some
internal sensors, such as accelerometers and compass(Fig. 8.2-3).

Relevant places are associated to paintings by artists of different epoques, portraying
the city views related to the location selected by the user and the historical period ex-
pressed by the specific map. They are shown as pulsating spots on the map, attracting the
user attention (Fig. 8.3(a)).

As the user moves the cursor over a relevant place, the spot is highlighted to confirm
its detection and the corresponding artwork is projected on the walls surrounding the
installation(Fig. 8.2-5); relevant information about the author and the picture are presented
on the display of the cursor.

Further, the cursors can be lifted from the table and used as a gesture-based remote
control that allows the user to get near the projected paintings and still continue the brows-
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ing activity, updating the projection.
To allow more users to interact with the table and to experiment a simpler interaction

style, suitable for less skilled users, a few passive cursors have also been used: they are
small rectangular boxes decorated with the project logo, which can be placed and moved
on the table like the active cursors, causing the same behavior of the active devices. In
this case, obviously, there is no local information processing and display.

Additional visual cues are generated if the cursor is placed near to a spot but not
moved over it. A stream of light is generated, moving from the cursor to the nearest spot,
suggesting a move (Fig. 8.3(b))

Each user is independent; at most 5-6 users can operate at the same time, distributed
along the table sides with a comfortable amount of surrounding space to experience an
open view of a part of the map. Such distribution assures also that the user position
around the table allows the placement of the video projections on the walls in a regular
and pleasant layout.

Such layout is automatically arranged by an algorithm that tries to optimize space
usage by dynamically resizing pictures and trying to place new artwork directly in front
of the user that required its display. Since several new paintings could appear at the same
time, special care must be applied to ensure that the user receives enough hints to visually
associate the newly displayed painting with the action he just completed.

The tables are operated by the users without help, but the installations are guarded by
cultural mediators, personnel available to visitors to help them in case of need, and ready
to explain both the table functions and the associated content.

Optical System

As for any multitouch system, one of the most critical choices is related to the technology
used to detect the user interaction with the table surface. Given the large active surface
(measuring 300cm x 200cm) using a touch sensitive overlaid plane was not an option for
economic and practical reasons. Also the adoption of an external vision-based tracking
system was not viable, since the large number of simultaneous users would cause unpre-
dictable occlusion conditions.

In this regard, our choice has been directed to classical blob detection by placing a
number of cameras inside the table and oriented toward the surface. Specifically, we used
infrared cameras (i.e. cameras that leave out the visible light) equipped with an 850nm
thresholded filter.

This kind of camera is usually coupled with some source of infrared illumination, so
that the visible light produced by the internal projector does not interfere with the blob-
detection. To this end, two illumination techniques are usually adopted: the Frustrated
Total Internal Reflection (FTIR) and the Diffused Illumination (DI).

FTIR is based on the interference between the object in contact with the surface and
infrared light tangentially diffused inside the thickness of the surface layer and trapped by
the total reflection angle. Such interference causes the light to change direction and thus
to escape from the surface layer toward the camera.
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By contrast DI implies the naive illumination of the objects via a diffused light that
passes through the surface and is reflected as it encounters an infrared-reflective obstacle.

For this installation we used DI, which performed better than FTIR, as the large size
of the table hampers the even diffusion of the light and the strength of the returned sig-
nal. This limitation is even more exacerbated by the presence on the lower side of the
table surface of a diffuser layer that is needed to offer a screen for back-projection. The
visualization itself happens by mean of two short throw projectors mounted inside the
table.

Given the unfavourable ratio between the size of the table and its height (about 85cm),
the use of a first-surface mirror has been necessary to create a suitable light path. The
cursors consist of 6 Android based phones that communicate with the PC controlling the
business logic via Bluetooth.

8.1.2 Unreliability of Marker Recognition

Since the proposed interaction model requires to associate each blob seen by the camera
to a device, a reliable identification schema must be deployed. The adoption of Diffused
Illumination would normally allow the use of fiducial markers to perform recognition.
For this reason our first prototype was based on ARToolkit+ [227](see Fig. 8.5), a widely
used extension to the well-known ARToolkit tag system [123].

Unfortunately, in our setup we faced several hurdles that compromised the viability
of a marker-based recognition. The first problem is related to the size of the table. In
fact, for the surface to be sturdy enough to be safe and do not flex under its weight, it has
been necessary to use a glass pane 12mm thick. Since the diffuser layer is placed on the
bottom side of the surface, this resulted in the marker pinted surface being at least 12mm

Figure 8.4: Two examples of the Pi-Tag recognition process with our setup. The original
shot is shown in the first column. The other two columns show respectively the thresh-
olded image and the detected ellipses (bad contrast is due to the low transmittance of the
glass).
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Figure 8.5: The two fiducial marker designs tested with our setup: ARToolkit+ (on the
left) and Pi-Tag (on the right).

Figure 8.6: The effects of glass thickness and surface print over the readability of AR-
Tookit+ tags (bad contrast is due to the low transmittance of the glass).

away from it, which in turn caused a strong blurring. This blur does not prevent to track
the objects as blobs, however it inhibits even the most infrared-reflective markers to be
distinguished reliably. Further, an additional source of noise and occlusion is represented
by the map printed on the upper side of the surface.

In order to minimize such negative effects we took several measures: the markers
have been printed on a substrate highly reflective with respect to infrared light, the light
spots have been carefully calibrated to avoid blooming and reflections while still allow-
ing an even and bright illumination, the camera exposure and gain have been manually
optimized to get the best compromise between signal and noise. Finally we adopted a
best-of-breed adaptive thresholding algorithm and we manually tuned it to get the best
foreground/background separation.

In spite of these precautions, ARToolkit+ was not able to correctly recognized its
markers, which appeared very faint and occluded to the camera (see Fig. 8.6).

As a last resort, we tried to change the fiducial marker system and we made some in
depth experiments using Pi-Tag, a recently introduced fiducial tag that exhibits an ellipse-
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Figure 8.7: The locations of the detected markers in the test video overlayed to the printed

map (on the left) and the distribution of the detections with respect to the average gray

level.

based design that is moderately resilient to occlusion [34]. The adoption of and ellipse-

based design makes a lot of sense within our setup, since ellipse detection is fairly robust

to isotropic noise such as blur. Further, the Pi-Tag recognition algorithm is able to cope

with some missing ellipses, which could help a lot when dealing with the non-uniform

occlusion caused by the printed map overlay.

Regarding this latter problem, our first batch of qualitative tests revealed that the rec-

ognizability of the markers strongly depends on the local density of the printed overlay.

In Fig. 8.4 we show two anecdotal examples. In the first one, the marker is seen through

a non-uniform area where a Venice ”canal” separates two blocks of buildings (see also

Fig. 8.7 for a bitmap image of the printed area). In this case only the ellipses on the clear

area can be detected and the combination of blur and occlusion is too strong to allow

recognition. By contrast, in the second example shown in Fig. 8.4, the marker is placed

on the clear area of the ”lagoon” and, while an ellipse is still missing, the remaining signal

is good enough for the tag to be detected and recognized.

Even from this simple qualitative evaluation it seems that the quality of recognition is

still too unpredictable to be deemed as reliable. To get a quantitative assessment of this

speculation we made a video a couple of minutes long that captures the marker moving

over several locations. To obtain a fair evaluation for our setup, we tried to evenly cover

the area. In Fig. 8.7 we plotted the location of the detected markers over a part of the

original bitmap of the printed map. As expected, it can be observed that most of the

successful recognitions happen within the less occluded areas. This behaviour is further

characterized in the second column of Fig. 8.7. In this histogram recognition events are

grouped according to the average grey level exhibited by the map area where they happen.

Finally, the overall recognition rate was about 1%, since we obtained only 89 correct

detection within a video with more than 7000 frames.

This very low level of reliability of the marker-based recognition, prompted us to

explore different approaches in order to associate a blob to the device that produced it.
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Specifically, we exploited the expected correlation between blob movements (as seen from
the camera) and acceleration data (as measured by the device sensors). The details of the
implemented solution and its effectiveness in a real scenario are described in the following
sections.

8.1.3 Cursor/Table Communication
Before addressing the task of associating each tracked cursor to its identity, we first need
to sort out a couple preliminary problems related to the data interchange between the
active cursors and the table itself. Namely, we have to define a protocol for message
transmission and a technique to obtain a reliable synchronization between the real time
clock of the cursor and of the table. The latter is especially important, since we will
adopt machine learning techniques that will relate specific data patterns gathered from
the sensors with the information obtained from the camera. If proper synchronization
does not happens both the learning and the recognition steps can be severely hindered
since the mutual causality between the two phenomena could not hold any more.

Message exchange

All the communications throughout the system happen by exploiting the Serial Port Pro-
file (SPP) of the Bluetooth standard. From a design point of view this is a reasonable
choice for many reasons. For starters, Bluetooth requires much less power than Wi-Fi to
work, and since the cursors should be able to run on battery power for a whole 8-hours
day, energy saving must be seriously taken in account. Specifically, the device creates
the server SPP socket, i.e. it presents itself as a serial port service in a similar way to
what external GPS antennas or barcode readers generally do. Each device is first paired
with the associated table, which scans at intervals for them. When a device is found, the
table initiates the serial connection. The lack of connection for a long period indicates
that a device is either malfunctioning or has been stolen, either way, a warning should
be triggered. The communication protocol uses Consistent Overhead Byte Stuffing [62]
to transmit packets made up of an header, that specifies a message type and the id of the
sender, and a payload that is defined according to the characteristic of the exchanged data.
There is a total of four types of messages that are transmitted within the system:

Type Sender Content

Sensors Device Accelerometer and compass data
Url Table Url of the content to display
Action Device Url selected by the user
Ping Table Timestamp of table real time clock
Pong Device Timestamp of device real time clock

The Sensors message is sent at regular intervals from the device to the table and con-
tains the data gathered from the accelerometers and the magnetic field sensor. Since the
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actual update frequency of such sensors is usually very high on most Android devices,
the data are not sent directly, rather an integration step is performed on board to make
the update rate of the sensor data commensurate to the frame rate of the infrared camera
(about 30fps). The integration step imply the additional advantage of an implicit noise
reduction due to the averaging.

The Url message is sent by the table to control the display of the device. Each device
contains a set of HTML pages that can be loaded by the local browser. Once the table
identifies a device, it send the Url that selects a menu page related to the area of the map
where the device has been placed. This is the only control action that the table performs
with respect to the device.

The Action message is sent from the device when a user clicks on a link in the local
browser. The click is intercepted by the application running on the device and the GET
parameters (if any) are sent to the table. This protocol allows to define custom parameters
to trigger actions by the table such as the display of an artwork, the highlight of interesting
point on the map or any other interaction that can be added in the future.

Finally, the Ping and Pong messages are used to transmit the current time (in mil-
liseconds) as measured by the real time clock respectively of the table and of the device.
These two message are meant to be used to perform a round trip, initiated by the table, for
internal clock synchronization. The details about how this synchronization happens will
be given in the next section.

Time Synchronization

In order to properly correlate the data coming from all the devices we must be able to
measure the value of all the sensors at certain times. Even if the delay from the camera
acquisition to the blob identification is less than a couple of milliseconds and can be
ignored, this is not true for the data coming from the devices accelerometers. Indeed, the
delay introduced by the Bluetooth communication is in the order of tens of milliseconds
and also, unfortunately, is not constant, so we cannot reliably compute the data time from
the arrival time measured at the table PC. The importance of automatically synchronize
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the clock of all devices is twofold. First, the initial offset between each clock is not
negligible and must be taken into account to properly estimate the status of the system.
Second, due to the low accuracy of the quartz clock on modern devices that do not tick
exactly with the same frequency, a continuously increasing drift is accumulated as time
goes by.

To estimate with high accuracy the time offset between the server and each device
we chose to adopt the same method used in SNTP. The synchronization process starts
by collecting a set of pairs (o, d) where o is the offset between the server and a specific
device, and d is the measured round trip time. To gather each of this data, a packet is
sent to the device containing the current value of server time. On arrival, the device
must reply attaching to the packet its own time. When the server receives the reply, is
able to compute the offset between its time with respect to the device and the round trip
time as the difference between the arrival time and the original send time contained into
the packet. If we assume a symmetric unknown communication delay, the computed
offset would be exact but this assumption is just unfeasible for Bluetooth communication
devices. However, we can state for sure that the true offset value must be contained in
the interval [o− d/2...o+ d/2]. To restrict the interval as much as possible a lot of (o, d)
pairs are collected and the largest common interval (see Fig. 8.8) is computed by using
the algorithm proposed in [153].

8.1.4 Identification By Learning
In principle, several techniques could be adopted to identify blobs by combining sensor
data and tracking information. For instance, a hand crafted decision tree with suitable
thresholds could be applied to perform a direct verification of the compatibility between
the blob status and the reported orientation of the compass. However, this kind of ap-
proach becomes cumbersome when the amount of information begins to grow, which is
the case, for instance, if the history spanning the last few frames is considered. Further,
it is not always obvious how to relate the data and how to weight the contribution of each
source of information. Whenever a con-causal relation between different data sources
exists, but it is not clear how to design and parametrize a direct algorithm to exploit such
relation, resorting to some machine learning technique is a natural choice. In fact, given
a reasonable feature selection, learning techniques have proven to be often more effective
in classification tasks than manually crafted solution that exploit a direct knowledge of
the problem domain [31, 195].

We decided to address the issue of blob-device association in terms of a non-probabilistic
binary classification problem. In fact, during the normal usage of the system, two crucial
class of events can occur in which inference from sensor data can be performed to disam-
biguate some of the pairs. In the following we will refer to these two events with the terms
appear and stop. The appear event happens when a new blob starts to be tracked by the
system. If the blob is generated by one of the connected devices, the time-synchronized
signal produced by the accelerometers should be somehow related to the increasing area
of the blob. Also, the absolute orientation of the device with respect to the magnetic north
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Figure 8.9: Mutual causality relations between the observed blobs and the data gathered
from the sensors. In the first row an appear event is shown: note that as the object touches
the table a sudden stop in the vertical acceleration (Az) can be observed, as well as a fast
increase in the blob area. In the second row a stop event is detected as the accelerations
(Ax, Ay, Az) and the velocities (Vx, Vy) measured toggle from a quiet state to an active
state and then to a quiet state again. Note that the speed of the blob measured from the
camera (yellow arrow) agrees with the data coming from the sensors.

should correspond to a specific orientation of the blob in the image frame (assuming that
the table cannot be moved once calibrated). Differently, the event stop is triggered when
a tracked blob stops moving. When this occurs, the blob velocity signal computed by
the table will probably be coherent with the accelerometer data, both defining the same
space-time trajectory.

In Fig. 8.9 an example of the signals coming from the aforementioned sensors is
shown for an instance of the appear and stop events. Because of the non negligible sensor
data correlation that is exhibited in this two particular events, a binary classifier should be
able to answer the question ”Is this blob data related to this specific device data?” with
very high accuracy. Many different types of binary classifiers have been proposed in liter-
ature, each with its own strengths and weakness. Due to the relatively high-dimensional
well-separable sensor data we decided to use the well known Support Vector Machine
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method [53].

Machine Learning with SVM

Suppose that we are given training data

{(x1, y1), . . . , (x`, y`)} ⊆ Rd × {−1, 1} (8.1)

Where Rd denotes the space of the input patterns (sensor data in our case) and yi ∈
{−1,+1} indicates the binary class in which the point xi belongs. In the simplest case,
we can assume that there exist some hyperplanes which separate all points having yi =
1 (positive examples) from those having yi = −1 (negative examples). Any of those
hyperplanes can be defined as the locus of points x satisfying the equation.

w · x + b = 0 (8.2)

Where w is the normal of the hyperplane and |b|/
√

w ·w is the perpendicular distance
from the hyperplane to the origin. A support vector algorithm simply looks for the hyper-
plane that maximizes the margin with respect to all points, defined as the shorted distance
between the hyperplane and any of the negative or positive point. If the training data are
linearly separable (this hyperplane exists), one can find a pair of hyperplanes such that no
point lie between them and the following constraints are satisfied:

xi ·w + b > +1 ∀yi = +1 (8.3)

xi ·w + b 6 −1 ∀yi = −1 (8.4)

that can be combined into:

yi(xi ·w + b)− 1 > 0 ∀i (8.5)

It is easy to demonstrate that the hyperplane with largest margin can be found by solving
the following convex optimization problem:

minimize
1

2
||w||2

subject to yi(xi ·w + b)− 1 > 0 ∀i
(8.6)

This problem is feasible only under the assumption that such hyperplane actually exists.
However, it may not be the case even if we know that the data should be linearly separable
considering the presence of outliers or noise that may hinder that assumption. To this
extent it is common to relax the constraints (8.3) and (8.4) by introducing positive slack
variables ξi, i = 1, . . . , ` transforming the formulation with the one proposed in [71]:

minimize
1

2
||w||2 + C

∑̀
i=1

ξi

subject to xi ·w + b > +1− ξi ∀yi = +1

xi ·w + b 6 −1 + ξi ∀yi = −1

ξi > 0 ∀i

(8.7)
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Roughly speaking, the constant C > 0 is a weighting term that determine how much
we are interested to keep the hyperplane flat against the amount up to which we can
tolerate mis-classifications in our training data. By introducing Lagrange multipliers
αi, i = 1, . . . , ` the constrained problem (8.7) can be reformulated in the so called dual
form as follows:

Maximize LD ≡
∑
i

αi −
1

2

∑
i,j

αiαjyiyjxi · xj

subject to 0 6 αi 6 C∑
i

αiyixi = 0

(8.8)

and the solution w can be computed as:

w =
Ns∑
i=1

αiyixi (8.9)

Note that, albeit there exist one αi for each training data, only few (Ns) αi will be greater
than zero. Those points for which αi > 0 are called support vectors and lie on one of
the two separating hyperplanes. Moreover, switching to Lagrange formulation allows
the training data to appear only in the form of dot products between vectors. This is an
interesting property that can be used to generalize the method in cases where we want the
decision function to be a non-linear function of the data.

Suppose to map the data in some other Euclidean space H through the mapping Φ :
Rd 7→ H in which the points are linearly separable. The method can be generalized in
term of kernel function by observing that is only required to define a kernel K such that
K(xi,xj) = Φ(xi) · Φ(xj).

Several kernels exists in literature with different characteristics. For our application
we restricted to the evaluation of the linear kernel:

K(xi,xj) = xTi xj (8.10)

and the gaussian kernel:
K(xi,xj) = e−g||xi−xj ||

2

(8.11)

Cursor Identity Classifiers

To associate every device with its blob when appear and stop event are triggered, we
trained two independent SVM-based classifiers. This choice is is due to the fact that the
feature set used in the first event is slightly different from the second. Indeed, if the
accelerometer and compass data are always necessary to describe the device state in both
events, the rate of growth of blob area is relevant only when a new blob appears and the
blob velocity is only applicable just after a motion on the table.
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Figure 8.10: Improvement in accuracy with sequences of Stop events with different
lengths.

Specifically, for the first classifier we collected vectors xi ∈ Rd composed by d distinct
features. The first component of the vector is the angle difference in degrees between the
orientation of the blob in the image space and the magnetic north measured by the device.
Since a blob is seen as a rounded rectangle, only an undirected axis can be computed
from its shape and so the difference is chosen as the minimum angle between the axis
direction and the device orientation. It should be noted that just a rough orientation is
required, thus small deformations of the observed shape (due to occlusion or to the hand
holding the object) should have minimal influence. Once the number of samples s and
history length h (in seconds) are chosen, the next 3s components of the vector xi are
just the concatenation of measured values of acceleration with respect to the three axis of
the device. Each signal is linearly interpolated and re-sampled s times in the time span
defined by h. Last s components of vector xi are the measured values of blob area size in
pixel, re-sampled in the time interval that spans from the first detection of the blob to the
time in which the appear event is triggered.

In a similar way, for the second classifier we collected vectors whose first 3s + 1
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components are identical to the first case. Last 2s components are the concatenation of
measured values of blob velocity computed by the table during its movement. Again, the
measures are trimmed and re-sampled to match the corresponding acceleration signals.

Different values of s and h can be chosen to define the trade-off between the di-
mensionality of the vectors and the descriptiveness of the sensor data. Some possible
combinations are proposed and evaluated in the experimental section.

Improved Reliability via Majority Voting

The accuracy of the linear and Gaussian kernel based classifiers for the appear and stop
events is expected to be good enough to get a correct classification most of the time.
However, given that several events could happen during the tracking lifespan of an object,
a proper technique should be adopted to get advantage of the added information supplied
by subsequent classifications. To this end, we propose a very simple majority voting
method where a blob that enters the tracking system is first identified through the appear
classifier, then, if such blob remains consistently tracked by the camera, each possible
stop event will cast an additional vote that can confirm or deny the initial recognition.
Since, in our schema, we trust more the appear event, the initial identification is kept as
valid if the votes against are not the strict majority. This method permits to correct initial
association error and prevents further individual wrong classifications from compromising
the correctness of the association.

It is interesting to analyze this approach from a probabilistic point of view in order
to asses the improvements that are to be expected by applying such correction measure.
First of all, we define with the symbol Pa the accuracy of the classifier of the appear event
and with Ps that associated to the stop event. The probability to observe exactly i correct
stop classifications over a total of k events can be computed according to the Binomial
distribution:

Pexact(k, i) =

(
k

i

)
P i
s(1− Ps)k−i (8.12)
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Figure 8.11: Evaluation of the accuracy of the linear kernel SVM classifier for both the
Appear and Stop events.
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Since all the Ps(ki) are disjoint events, we can compute the probability of observing at
least j correct classifications as:

Patleast(k, j) =
i<k∑
i=j

(
k

i

)
P i
s(1− Ps)k−i (8.13)

If we consider the first classification, we could have obtained a correct classification with
probability Pa and a wrong one with probability (1− Pa).

Again, these events are clearly independent, thus the overall probability of getting a
correct classification when applying majority voting after k observed stop events can be
computed as:

PaPatleast

(
k,
⌊k

2

⌋)
+ (1− Pa)Patleast

(
k,
⌈k

2

⌉
+ 1
)

(8.14)

In fact, at least bk
2
c correct stop event detections are needed to not spoil a good initial

classification, while at least dk
2
e+ 1 are required to fix a wrong start.

In Fig. 8.10, we show the expected accuracy of a combined classifier respectively for
2, 4 and 6 correction steps and with respect to a range of different accuracy for the base
classifiers.

8.1.5 Experimental Validation
The proposed approach has been tested by using it as a device identification for the mul-
tiuser map based art browser described in Sec. 8.1.1. Two quantitative aspects of the
system have been studied separately: the performance of the classifier (both with a linear
and Gaussian kernel) and the accuracy of the time synchronization protocol used.

Classification Performance

To assess the classification accuracy for both appear and stop classifiers a set of manually
labelled data have first to be collected.

The positive examples (i.e. the ones for which the data refer to a correct device-blob
association) are gathered by triggering appear and stop events keeping only one active
device at a time. Data are recorded simulating a normal system usage with just a single
device hence ensuring that the only blob visible will be the one produced by that device.
Negative examples are collected in a similar way but exploiting inactive devices. Again,
data are recorded during a normal system usage but placing on the table only inactive
devices and using active devices on a fake non-interactive table. In this way, blobs seen
by the table will never refer to their correct device.

We collected a thousand of samples for appear and stop events to be used for training
and testing. To compute the classifier accuracy with respect to linear and Gaussian kernels
we performed a K-fold cross-validation to our data. In k-fold validation the data set is
randomly partitioned into k sub-samples. k−1 sub-samples are used to train the classifier
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Figure 8.12: Evaluation of the accuracy of the Gaussian kernel SVM classifier for the
Appear and Stop events.
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Figure 8.13: Evaluation of the accuracy of the time synchronization with respect to the
number of samples taken and of the amount of drift between the two real-time clocks with
respect to the time elapsed from the last synchronization.

and the remaining sub-sample is used as the validation set to test the learned model. This
process is repeated k times and the average accuracy is returned. This limits the over-
fitting that may occur while learning the model and allows an effective exploration of
method parameters. In all our experiments we chose k = 5.

For each of the two classifiers, linear and Gaussian kernel have been tested with three
different type of data points, respectively using a signal timespan of 1 second with 10
samples, 0.5 seconds with 10 samples and 0.5 seconds with 5 samples.

In figure 8.11 the accuracy of two classifiers with linear kernel is shown with respect
to the parameter C. The classification performance of appear event is better than stop,
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probably for the lower dimensionality of the points that allows the data to be more linearly
separable. In the first case the best accuracy is ≈ 97% while considering a signal timespan
of half a second. In the stop case the best accuracy is ≈ 93% achieved with a timespan
of one second. In both cases the value of C is not crucial to obtain good performances
demonstrating that the training data are probably well separable into the two classes.

In figure 8.12 the accuracy is examined as function of C and g parameter space. Over-
all, the non-linear classifier obtains better performance with respect to linear case. Best
accuracy of 99.3% is obtained for the appear classifier with a timespan of 1 second with
10 samples. However it has to be noted that the portion of the C/g plane for which accu-
racy is above 95% is wider for a timespan of 0.5 seconds. For the stop event, the accuracy
is a little bit lower and the best performance is achieved for a timespan of 1 second, which
is a behaviour similar to the one that has been found when dealing with the linear case.

This level of accuracy is already good enough to be used in many practical scenar-
ios that are tolerant to a negligible degree of misclassification. However, it should be
noted that, according with the probabilistic analysis done in Sec. 8.10, considering the
obtained accuracies, the combination of the two analyzed classifiers could easily reach an
extremely reliable recognition rate.

Time Accuracy and Drift

In subsection 8.1.3 we described the technique adopted to synchronize the real time clock
of the device with the time measured by the PC inside the table. In practice, this boils
down to measure as precisely as possible the time offset between the two clocks.

In the right part of Fig. 8.13 we show the effect of the number of samples over the
accuracy of the offset measure (i.e. the size of the intersection between all the measured
intervals). It can be seen that after as few as 20 samples the accuracy is about 20ms and
seems to be asymptotically approaching 10ms as the number of samples increases. An
accuracy between 10ms and 20ms is acceptable for our application since it is in the same
order of the camera sampling, which happens at 30fps (and thus, every 33ms).

From a theoretical point of view, a large number of samples could easily be obtained
by sending time synchronization messages regularly when the device is not transmitting
other data. Unfortunately, in practice this is not possible because of the drifting between
the two clocks, i.e. the slight but significant difference of the internal oscillators. The
drifting between a device and the table has been measured using a sliding samples win-
dow. The resulting data have been plotted in the left graph of Fig. 8.13. The drifting
seems to be linear with the time (which is of course expected) and its value is in the order
of about 50ms over a time span of 20 minutes. This is indeed a large value and it implies
that for the synchronization to give reasonable results the probing messages should be
exchanged in a few seconds span. Further, given the sizeable drifting, synchronization
should happen quite often.
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8.2 A 5 Degrees of Freedom Multi-User Pointing Device
for Interactive Whiteboards

Interactive whiteboards are nowadays rather common equipments in classrooms as they
provide large advantages in terms of expressive power. Despite the radical paradigm shift,
their interaction model is firmly tied to the archetypal concept of strokes and gestures
over a whiteboard. In this section we introduce a novel pointing device that enables
one to escape the surface-based interaction, by means of a robust and occlusion resilient
multi-camera 3D tracking. More precisely, we designed a frequencybased active pen. By
means of a camera network such pen can be localized in a 3D frame featuring the same 5
degrees of freedom exposed by a real whiteboard marker. Our approach allows for using
many pointers at the same time, by reliably assigning an unique and permanent identity to
each one. By levering on these capabilities, interaction designers can conceive new and
inventive interaction models. A few of them have been implemented within this study and
are described in the experimental part of this work.

8.2.1 A Robust 3D pointing Device
The overall conception of our 3D pointing system has been driven by a handful of simple
yet strongly characterizing design goals:

• The pointing device itself should be as similar to a pen as possible: small enough to
be grasped between thumb and forefinger and quite light to be held for prolonged
time without fatigue;

• More than one pointer should be usable at the same time, in order to enable a
seamless multi-user interaction;

• The accuracy of the position and orientation assigned to each pointer should be high
enough to enable classical whiteboard based actions;

• The pointers should work on a continuous basis, regardless of the position of the
users (which can cause occlusion) and the nature of the background (which can
produce clutter).

The key idea to satisfy those requirement was to ditch any kind of recognition tech-
nique in the spatial domain and to perform the identification within the time domain. To
this end we designed a pointer augmented with two infrared LEDs that pulse at a given
frequency (see Fig. 8.14). By analysing the signal throughout a sequence of frames we
are able to locate each pointer and to recognize its ID. Since we set a π

2
radians phase

difference between the head and the tail LED, it is also easy to assign an orientation to
each pointer, totalizing of 5 degrees of freedom. In the remaining part of this section we
will assign those degrees of freedoms to the euclidean position of the head LED [xyz]T
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Figure 8.14: Key components of the active pointing device described (see text for details).

and to the direction of the pointer expressed as polar angles [θφ]T . Note that the 6th de-
gree of freedom, that would be the rotation around the pointer axis, cannot be recovered.
However this kind of information is not needed for our intended usage. Also note that the
current prototype mounts the LEDs on a single face of the device. We did not consider it
a restriction on their visibility, since we placed the detecting cameras at ceiling level, and
the used LEDs were able to spread a strong enough signal over a full 180 degrees field of
view.

The pointer ID is selectable by means of a set of four switches that are accessible
on the controller board (see Fig. 8.14), this allows for a total of 16 pointers. The two
buttons on the top of the pointer are two additional bits that are chained to the pointer
ID to produce a 6 bit word that is used by the microcontroller to choose the frequency
of the LED pulse. This way, each pointer can emit up to 4 different frequencies: a base
frequency when no button is pushed, and three additional frequencies when one or both
buttons are pressed. Out of practical reasons, we assigned the frequencies monotonically
with the values of the 6 bit word created with the combination of the pointer ID and of the
buttons status. Differently from methods that perform identification by processing object
appearance in a single image, our approach allows to use very small features (indeed point
light sources) that are detected equally well both near or far from the camera. Of course
the identification requires several frames, however, once a pointer has been recognized,
its head and tail LEDs can be tracked on a frame-by-frame basis without needing a new
recognition as long as the tracked does not miss. Additionally, the small size of the
light sources grants a good precision with their localization and the use of infrared light
makes it possible to filter out most of the scene clutter. Such accuracy, together with the
resilience to occlusion, will be further enhanced by leveraging on a network of cameras
that will offer both redundancy and statistical pose validation.
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Figure 8.15: Filtering of the signal emitted by two pointers at different operating fre-
quencies. Note that the response strength is highly sensitive to the filtering frequency.
Furthermore, phase detection produces garbage data when not applied to a signal with
corresponding frequency.

Frequency-based Pen Detection and Recognition

When a camera equipped with the proper infrared band-pass filter is used, only the signal
generated by the pointing devices should be detected with non-negligible intensity. Such
signal will produce unimodal intensity blobs whose size depend on the distance from the
camera, and whose local maximum is located at the center of the LED.

Specifically, in our setup we use some PS3 Eye cameras equipped with a custom
filter, modified for infrared, running at 75 frames per second. Each frame acquired is then
thresholded with an adaptive method [169]. The resulting blobs are detected and fitted
with parametric ellipses using the OpenCV library [43]. Such ellipses are thus refined on
the original image with subpixel accuracy [170].

Each of their respective central points p is tracked between subsequent frames and
labelled with the timestamp of the frame itself and the intensity of the associated signal.
Such intensity has been computed as the average graylevel detected by the camera within
a radius of three pixels from the tracked point. We refer to the timestamp (in second) of
point p in frame i as t(p, i) and to its intensity as I(p, i).

Since the signal emitted by each LED is characterized by a specific frequency, we
are now able to probe the identity of each point p by correlation with a sinus wave of
the expected frequency f . This is performed by computing over a total of n subsequent
frames, the vector:

Cp(f) =

(∑n
i=1 cos(2πft(p, i))I(p, i)∑n
i=1 sin(2πft(p, i))I(p, i)

)
(8.15)

The length of Cp(f) is proportional to the correlation between the signal associated to p
and the reference frequency f . Further, the angle between Cp(f) and the horizontal axis
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can be regarded as the phase of the signal emitted by p. This two facts offer a practical
tool for rejecting false positive points that are not generated by pulsating LEDs, and also
for discriminating each pointer from the others in multiuser scenarios.

In details, our recognition pipeline performs the following steps:

• A frame is acquired by the camera and the center points of the LED candidates are
located and tracked with respect to the previous frame;

• The current timestamp and intensity are added to the history of the successfully
tracked points;

• For each frequency f to be probed and for each point p we compute Cp(f) over an
history of n frames;

• If the two points with maximum response are above a given threshold, we consider
the phase difference between them. If such difference is near to π

2
radians the two

points are deemed as belonging to the same pointer.

Note that the number of frequencies to be probed and their values depend on the set of
pointers that are expected to be in the scene. However, the probing step implies only a
handful of computations and it is very fast, even when a large number of simultaneous
pointers (and thus frequencies) are to be probed. The number of frames, n, required to
compute Cp(f), depends on the trade-off between accuracy recognition speed. While 3
frames are the theoretical minimum, in our test we found that 9 frames are a good choice
to cope with the unavoidable noise coming from the imaging process. Within our setup
we provided 16 possible frequencies, spanning from 1hz to 16hz with 1hz incremental
steps. The top 16hz frequency is a safe value with respect to the Nyquist sampling the-
orem, considering the 75hz sampling rate of the cameras used. The 1hz increment was
experimentally shown to be large enough to separate well different pointers. In Fig. 8.15
we show the effectiveness of the frequency probing to tell one from the others, and to
validate it by means of the phase difference between the two LEDs. We observed two
pointers standing on an horizontal surface emmitting signal respectively at 4hz and 5hz.
The first row in Fig. 8.31 shows the signal strength computed through Eq. 8.15 (logarith-
mic scale). The second row shows the detected phase, which is stable and correct only
when the LEDs are filtered through the correct frequency slot.

Reliable Estimation of the Pointer Pose from Multiple Views

Since the size of the detected blob depends on the distance of the LED from the camera,
a single camera would theoretically grab enough information to assess the 3D position of
the pointer. This approach, although not usual within the Computer Vision community,
has been deployed in actual commercial products, such as the Playstation Move game
controller [209]. Still, given the small size of the adopted LEDs, the high accuracy re-
quired and the need for an occlusion-resilient tracking, we believe that a camera network
would be a more suitable choice for our applications.
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Figure 8.16: Illustration scheme of the pinhole camera model adopted (a) and of the
triangulation process (b). See text for details.

With the term camera network we refer to any number of fixed cameras that are cal-
ibrated for both intrinsic and extrinsic parameters. Specifically, we require the distortion
coefficients of the cameras to be known (and thus factored out with apt image processing
steps) and the focal lengths (f ) and principal points (cx, cy) to be estimated with good
accuracy. Further, we need to know the position and orientation of each camera, that is
the rotation matrix (R) and translation vector (T) that move absolute coordinates to the
reference system of the camera. These information allow to compute the image projection
p of a 3D point p′ (in homogeneous coordinates) as:

p =


fx s cx

0 fy cy

0 0 1

 [R|T]p′ = K[R|T]p′ = Pp′

where K is usually called the camera matrix and P the projection matrix.
Under these assumptions each camera can be modelled with a simple pinhole-based

projective imaging model (see Fig. 8.16-a) where each blob center p is on the line of
sight of the actual LED p′ through the projective center O. Given a pair of cameras that
detect two blob centers p1 and p2 (see Fig. 8.16-b), it is theoretically possible to find the
exact location of the LED p′ by solving a simple linear system. Of course, calibration and
measurement errors hinder the ability to find an exact solution for such system, which
motivates the need for a triangulation method that minimizes some meaningful error met-
ric. To this end, classical least square is not that popular, since it does only account for an
algebraic residual which is not directly related to the actual measures observed. Rather,
most of the (very large) literature about triangulation aims to the minimization of the re-
projection error, that is the distance (in pixels) between the actually observed blob centers
p1 and p2 and the reprojections onto the image planes of the estimated point p′. Among
the deluge of triangulation methods, we adopted the seminal (but still effective) technique
proposed by Hartley and Sturm [107]. This way, we are able to obtain a hypothesis about
the position of the LED for each pair of of cameras in the network.
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Since with N cameras we can generate up to
(
N
2

)
hypoteses, we gain some level of

redundancy to occlusion and of robustness to noise, which can result from some kind of
averaging of the independently estimated positions. In principle, the hypotheses could be
joined with a mathematical average of the coordinates, however this approach would not
benefit from the a priori knowledge of a very significant constraint, that is the physical
distance between the head and tail LEDs. If one is only interested in the optimal posi-
tioning (with respect to reprojection error) of unconstrained points, simultaneous multiple
camera triangulation methods already abound in literature [28, 63, 206]. Differently from
such methods, we treat the whole pointer as a rigid object of known length and we pro-
ceed to find the rigid transform that minimizes the squared distance between its LEDs and
a point cloud of hypotheses. Such cloud is in fact made up by the triangulated positions
of the head and tail LED obtained by different camera pairs. This transform can be easily
found through the closed-form method proposed by Horn [112]. Finally, since the Horn’s
registration method seamlessly allows to give a weight to each point in the hypotheses
cloud, we exploited for that purpose two information pieces coming from the triangula-
tion process. The first information is the maximum reprojection error committed under
hypotesis p′, that is:

Re(p′) = max(‖P1p
′ − p1‖, ‖P2p

′ − p2‖)

where P1 and P2 are the projection matrices of the first and second camera that produced
the triangulation, p1 and p2 are the respective image points. The second error measure-
ment is the time difference (in seconds) between the two acquired frames:

Te(p′) = t(p1)− t(p2).

Cameras are not guaranteed to be synchronized, hence the triangulation can be performed
between two shots belonging to slightly different samples in time. Since the two error
sources are independent, we can model the weight of the estimated point p′ as the density
of a a mixture of two orthogonal zero-mean Gaussians:

w(p′) = e
− 1

2
(
Re(p′)2
σre

+
Te(p′)2
σte

)

where σre and σte are the standard deviations of the reprojection and time error distribu-
tions.

Although the estimation of the pointer pose tends to be very reliable, due to the number
of hypotheses made in the camera network, it might be the case that external factors hinder
the ability to provide a smooth and continuous tracking of the motion.

For instance, in practical usage scenarios it is quite common to get one or both LEDs
occluded by the user during the normal operation as a whiteboard pointer. Moreover,
when the object appear and disappear from a particular network camera, the estimated
position may change abruptly (due to the averaging implicitly performed by Horn method)
resulting in a noisy estimation. To overcome these limitations, we can model the motion
of the pointer as a time varying system. The complexity of the state evolution is tackled
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by considering its state as stochastic (thus including some intrinsic degree of uncertainty)
and only observable through noisy measurements.

In our formulation, we modelled the unknown state x = (x, y, z, vx, vy, vz)
T of each

LED as a six-dimensional gaussian distribution with mean µ and covariance P. The first
three components define the spatial position of the LED, the least three its velocity. We
describe the evolution of the state, called process, through each discrete time step k, with
duration dt, as a linear function of the state at previous step k − 1, perturbed by gaussian
noise q:

xk = Axk−1 + q

q ∼ N(0,Q)

A =



1 0 0 dt 0 0

0 1 0 0 dt 0

0 0 1 0 0 dt

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Whenever a camera pair in the network successfully triangulate a LED, a new mea-

surement vector yk = (mx,my,mz)k
T is generated and used to reduce the uncertainty

we have about the state of the system. Similar to the process, also measurements are as-
sumed to be perturbed by an additive gaussian noise r. As a consequence, the model that
describes how each measurement yk depends on the current state xk is defined as:

yk = Hxk + r

r ∼ N(0,R)

H =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


Assuming to know the prior distribution of the state x at time k = 0 and the set of
measurements prior of each time step k: (y1 . . .yk), the task is to estimate the posterior
distribution of hidden states p(xk|y1 . . .yk) for each k = 1, 2, . . .. The state distribution
is assumed to be Gaussian and process and measurements models are linear. Hence, a
very efficient closed form solution is given by the ”Kalman Filter” [121]. During the
tracking of the pointer, the state is estimated at a fixed rate by cycling two consecutive
steps: prediction and update. In the prediction step the predicted distribution at time k is
computed from the one at time k − 1 following the process model:

µ−k = Aµk−1

P−k = APk−1A
T + Q
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In the update step, measurements coming from each available camera pair are assimilated
to the current estimate and the posterior distribution is computed as:

vk = yk −Hkµ
−
k

Sk = HkP
−
k HT

k + Rk

Kk = P−k HT
kS−1

k

µk = µ−k + Kkvk

Pk = P−k −KkSkK
T
k

There are many advantages in the usage of a stochastic filtering approach. First, it offers
an elegant way to simplify the dynamics of a system (in our case we consider just position
and velocity) by formally including uncertainty in the model. Second, a clue of the error
introduced by the filter is obtained through the covariance matrix P that is estimated along
with the state. Finally, the amount of filtering can be adjusted by acting on the covariance
matrices Q and R. Process noise is very hard to define in practice because it depends on
the actual behaviour of the pointer that may exhibit an unpredictable oscillating trajectory
since is moved by a human. On the other hand, measurement noise depends on the char-
acteristics of the acquisition device. It could be estimated exactly if a ground truth of the
pointer is known. For our experiments, we just tuned the diagonal values of both matrices
by hand (assuming a stochastic independence between each state component) to a good
tradeoff between the lag on the filter and the smoothing introduced.

Figure 8.17: The simple camera network rig built for our setup.
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Figure 8.18: Plots of the X, Y and Z coordinates of the pointer triangulated by 4 cameras
(6 independent pairs) over a few seconds time interval. Right frames offer a zoomed view
of a portion of left frames.

8.2.2 Performance under Real-World Scenarios
To experimentally assess the effectiveness of the proposed pipeline, we built a simple
test rig using 4 cameras (see Fig. 8.17). The cameras were calibrated both intrinsically
and extrinsically using OpenCV [43]. The obtained extrinsic parameters were further
regularized using graph diffusion techniques [217]. The cameras are not synchronized
and they run steadily at 75 frames per second.

We can model each frame grab as an uniform random variable between 0 and 1
75

sec-
onds, hence Te(p′) is the standard deviation of the distance between two such variables.
Under these assumption σte = 1

75
√

18
' 3 10−3 seconds. Differently from σte, there is no

easy theoretical method to estimate σre. For this reason we measured it over a collection
of about 20.000 samples obtained by moving the pointer within the view frustum common
to all the camera. We obtained σre ' 1.2 pixels.
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In Fig. 8.18 we show the measure of the coordinates of the pointer over a few seconds
of capturing. The motion was produced by fixing the pointer to a motorized rotating
stage, thus allowing to easily cover a meaningful spatial range with a smooth and unbiased
movement. We chose to display three separate plots, one for each coordinate. The noise
on X and Y coordinates is much lower than the noise on the Z coordinate. Such difference
is explained by the two major error sources (calibration and blob localization) being both
amplified by the triangulation along the Z axis of the cameras.

The continuous blue line in Fig. 8.18 shows the result of the rigid registration obtained
with Horn method. Exploitation of multiple independent measures and the rigidity con-
straint allow for a significantly lower variance and thus to a more accurate localization.
The continuous red line shows the effect of Kalman filter. The position estimate is clearly
smoother, which is a very important feature within interactive applications that include
free-hand drawing or writing, object manipulation or remote control of interfaces. This
additional smoothness comes at the price of a slight lag and inertia, as clearly shown in
the zoomed graphs of Fig. 8.18. In Fig. 8.20, we show a plot depicting the estimated
orientation of the pointer as a parametric curve extending over the polar coordinates φ
and θ. The aforementioned experiments give a semi quantitative idea about accuracy of
the pointer localization. However, we are lacking a proper ground truth, since the rotating
stage used is not repeatable enough, and it is not accurately calibrated with respect to the
camera network.

To produce a strictly quantitative evaluation with a proper ground-truth and to gain
a better insight about the measurement error we designed an additional experiment. We
fixed two pointers to a rigid bar about 10cm long and we manually moved such artefact
inside the whole active volume of the camera network. The measured distance between
the two head LEDs was exactly 86mm and the two pointers were mounted parallel one
to the other. Note however, that we are more interested in the steadiness of the estimates
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Figure 8.19: Distance (left) and angle (right) between two rigidly linked pointers with
respect to the distance from the camera array (Z coordinate).
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rather than in their absolute values. In fact, it can be easily shown that an ideal metric
measurement system which operates through triangulation is characterized by a null space
deformation inside the working volume. To this end, we can ascribe all the fluctuations to
detection or calibration inaccuracies. In Fig. 8.19 we show respectively a scatter plot of
the distance between head LEDs and angle between the two pointers with respect to the
Z coordinate of the first head LED (which is proportional to the distance from the camera
network). While the measured gap between pointers seems to be quite stable at a given
distance from the camera network, some bias can be observed along the Z axis. The range
of such bias, which is probably due to slight inaccuracies with the extrinsic calibration,
exhibits a span of about 2mm in the whole volume, which is more than acceptable for any
interactive IWB application.

8.2.3 Applications Prototypes
To complete our study, we developed three prototype applications that have been explic-
itly designed to take advantage of the 3D capabilities of the pointers and of the multiuser
nature of the whole system. For each application we used a short throw projector to dis-
play the interactive content. We calibrated a rigid transform from the camera network to
the projected surface reference frame, in order to get a proper position and orientation for
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Figure 8.20: Plot of the orientation of the pointer (in polar coordinates) as estimated by
each independent camera pair, or by the Horn-based averaging, or through the described
filter.



168 8. User tracking in HCI applications

Usual interactive whiteboard with depth awareness

Simulation of the electric field generated by two dipoles

Manipulation of 3D objects using the pointer as a 3D mouse

Figure 8.21: Three examples of possible usages of the described pointers as input devices
for IWB applications (see the text for details).

the pointers.

Overlay Writing

The first proof-of-concept application is a simple writing system that allows several users
to annotate the screen by hand-free writing. The interaction paradigm is similar to the one
found with traditional interactive whiteboards, however the user operates at a distance and
his/her pointer does not lay on an actual surface. This introduces additional freedom, as
the user is free to move around in the classroom and can operate remotely. For instance,
learners and instructors could interact over the same surface while the former does not
leave its seat.
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We exploited the Z axis as a mean to define the thickness of the line drawn and of
the diameter of the eraser (see the first row of Fig. 8.21). Specifically, lines are drawn
by pressing the first button of the pointer. Each line is colored according to the user, and
it is more thick as the pointer approaches the virtual blackboard. Similarly, lines can be
deleted using the second button of the pointer. The size of the eraser is bigger when the
pointer is near to the surface.

While the additional freedom of the system opens new usage scenarios, we also no-
ticed that the unavailability of a hard surface upon which pressing the pointer somewhat
hinders the ability of the user to write comfortably. We partially mitigated this drawback
by adding some visual feedback in the form of colored balls that visually indicate where
the drawing or erasing action would take place and which size would change according
to the size of the virtual tool.

Physical Simulation

Our second application example is especially crafted to benefit from both the multiuser
and 3D capabilities of the system. The two pointers are used to model two electrical
unit charge dipoles. Two (or more) users are invited to freely move such dipoles within
the working volume of the camera network. As the dipoles are moved, their position is
reproduced in a projective scene and the stream lines of the electric field are visualized
using a color scale to express the intensity (see the second row of Fig. 8.21).

This is a basic example of a collaborative applications where multiple users cooperate
to perform a common task in the 3D space, by means of a real time visual feedback.
Other examples could include concurrent editing of cad models, the control of remotely
operated devices, or even videogames.

3D Object Manipulation

The last test application adopts the pointer as a 3D manipulation device. A single user
moves the pointer and rotates it in front of the display. As a result, the 3D scene or object
model shown in the application follows the movements performed by the user, which is
thus allowed to intuitively control the object position, rotate it, push it farther or drag it
toward him (see the last row of Fig. 8.21).

From a functional standpoint, the pointer is used to perform exactly the same set of
actions that could be obtained using a 3D mouse interface, however, in this case, there is
a direct physical connection between the position and orientation of the pointer and the
manipulated object.

Qualitative survey

Differently from the accuracy of the triangulation, analysed in the previous section, the
described applications are difficult to evaluate in a quantitative manner. However, since
the final goal for our interactive whiteboard is to be operated by end users, it would still be
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Question Avg. Dev.

O
ve

rl
ay

Overall, how much the proposed task has been easy to complete ? 3.91 0.79

Did you found the accuracy of the pointing device to be adequate for
the task ?

4.16 0.71

Did you perceived a satisfying and timely feedback between the ac-
tion performed and the system behaviour ?

3.83 1.02

Ph
ys

ic
al

Overall, how much the proposed task has been easy to complete ? 4.66 0.49

Did you found the accuracy of the pointing device to be adequate for
the task ?

4.83 0.38

Did you perceived a satisfying and timely feedback between the ac-
tion performed and the system behaviour ?

4.58 0.66

M
an

ip
ul

at
io

n

Overall, how much the proposed task has been easy to complete ? 4.75 0.62

Did you found the accuracy of the pointing device to be adequate for
the task ?

4.83 0.57

Did you perceived a satisfying and timely feedback between the ac-
tion performed and the system behaviour ?

4.66 0.77

Table 8.1: Results of a brief survey submitted to a group of students.

useful to assess the perceived quality and usability of the system. To this end we asked 12
volunteer students (8 males and 4 females, aged 19–26) to perform one specially crafted
task for each application scenario. Specifically, the tasks were:

• Overlay Drawing: draw two circles, the first one using a thin line and the second
one with a thick stroke. Note that thickness can be adjusted by moving the pen
towards or away from the surface;

• Physical Simulation: place the two charged wands parallel and with concordant di-
rection, then turn one wand 90 degrees. Tell which configuration produces the more
intense magnetic field. Note that field intensity is coded using color temperature;

• Object Manipulation: Rotate and move the rabbit in order to count all the fingers
that are present on its paws;

Each user has been briefly instructed about how to perform the task using the pointer,
but he has not be allowed to try it in advance. Additionally, no user was able to watch the
others perform the tasks.

After completing the tasks, the user was presented with a questionnaire which con-
tained the same three questions for each activity. We decided to use the same questions
in order to make the results comparable among tasks and to get some insight about how
well the pointer is suited for each one. Each question was asking the user appreciation of
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several aspects of the experience in a 5 points Likert scale, with appreciation increasing
with the answer value. Table 8.1 shows the questionnaire and the answers’ average and
standard deviation. We observed, for each activity, three aspects of the system. The first
one, corresponding to the first question, was a general inquiry aiming at assessing the
overall comfort level with the assigned task. The other two questions were designed to
evaluate respectively the perceived accuracy and the quality of the feedback (which, in
turn, is mostly related to the responsiveness of the system loop).

As can be observed in Table 8.1, the Overlay task, albeit receiving a positive average
score, resulted to be less easy to complete with respect to the other two tasks. We postu-
lated that this might be due to the difficulties related to performing drawing operations in
mid air. Indeed, this is partially confirmed by the (relatively) low score obtained with the
third question. To better investigate this aspect we informally asked to the students that
gave lowest scores the reasons for their discomfort. Essentially, they confirmed the lack
of tactile feedback to be a problem. This is a hindrance associated with the chosen design
and it is not clear if it can be mitigated as the user get more accustomed with a contactless
interaction model. To this end, we feel that it would be interesting to perform a focused
study as a future work. Additionally, it would be also useful to investigate the impact of
an artificial feedback mechanism, such as a vibration associated with the contact between
the pen and a virtual mid air surface. Still, despite the weak feedback offered to the user,
the accuracy of the pointing device was found to be satisfactory. Note that the proposed
task was designed to test accuracy through two intrinsic challenges: being able to make
the circle regular and properly closing start and end point of the shape.

Regarding the other two tasks (Physical and Manipulation), the users were almost
completely satisfied with all the aspects of the device and of the interaction and the found
also the feedback and responsiveness to be more than adequate. We think that this is
partially due to the somehow less challenging characteristics of the tasks, which basically
are designed adopt the tracked device as a 3D mouse rather than as a complete pointing
system.
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8.3 Phase-Based Spatio-Temporal Interpolation for ac-
curate 3D Localization in Camera Networks

In this section we propose a simple interpolation schema that can be used to further in-
crease the accuracy of the tracking device introduced in section 8.2 by exploiting its puls-
ing LEDs to obtain a better synchronization of the cameras involved in the tracking pro-
cess.
Even with perfect calibration and feature localization, indeed, any triangulation would
produce unpredictable results if the imaging devices are not synchronized. This effect
is described in Fig. 8.22. An object (the red ball) moving along a line is captured by
two non-synchronized imaging devices. Between the shots performed by camera 1 and
camera 2 the object position has been displaced by vector S, moving from t1 to t2. As a
result, the projection of the object on the image plane of camera 1 through its projection
matrix P1 will be P1t1 and the projection observed by camera 2 will be P2t2. Given the
time discrepancy, when the rays passing through P1t1 and P2t2 are used to compute the
original location of the feature, they will not intersect (even with perfect calibration and
localization) and the reconstructed 3D coordinates of the ball will not correspond to any
of the two original positions (see r in Fig. 8.22). A rather standard way to measure the in-
accuracy of the reconstructed position is to reproject it back on the image planes through
the same projection matrices P1 and P2 and to measure the drift from the original imaged
features. Such measure is usually named reprojection error (e1 and e2 in figure).

In many practical scenarios camera synchronization is not a problem, since it is easy

O1 O2

t2

t1

P1t1
P2t2

r

s

P2r

P1r

e1
e2

Figure 8.22: A schematic representation of the triangulation error resulting from not cor-
rectly synchronized observations.
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to build specialized setups where a hardware triggering line guarantees that all the expo-
sitions would start and end at the same time. However, this could not be the case with a
network of independent cameras, where practical an technical considerations could limit
the amount and the type of communication between them. Furthermore, most off-the-
shelf low cost hardware lack specialized synchronization controls and require to resort to
some software-based solution accounting for time drifts. This is the case, for instance,
with the increasingly popular solution based on low-cost embedded solutions such as the
Raspberry Pi boards or other kind of acquisition devices, including smart phones. Many
algorithms exist to obtain time synchronization between connected devices but network
latencies can severely hinder the accuracy, especially on low powered and distributed de-
vices. Finally, even if perfect timer synchronization happens between devices, there is no
guarantee (especially with low cost embedded hardware) that the timestamp associated
by the device to the obtained frame actually corresponds to the time of physical acquisi-
tion. In fact, unpredictable delays due to the capturing hardware and buffering can easily
happen.

After reviewing the characteristics of the tracked device device and illustrating the
proposed method, we test its relevance with a specially crafted set of experiments. Such
evaluation includes both synthetic setups, used to assess the effectiveness of intrinsic
synchronization, and a couple of applications, designed to study the performance of the
method within real-world scenarios.

8.3.1 Spatio-Temporal Interpolation
The method proposed does not require specialized camera hardware and can work with
off-the-shelf components since it base its feasibility on a specific implementation of the
tracked device. The overall conception of such device has been driven by a handful of
simple yet strongly characterizing design goals:

• The device itself should be as simple as possible and should be easy to implement
with different approaches;
• More than one device should be usable at the same time, thus enabling multi-user

scenarios;
• The device should offer to the acquiring cameras enough information to perform

time synchronization.

The key idea to satisfy those requirement was to ditch any kind of recognition tech-
nique in the spatial domain and to perform the identification within the time domain. To
this end we propose a design providing two light sources pulsating at the same frequency
f . These two light sources are characterized by a phase shift of π

2
radians, allowing to

distinguish between a head (with nominal phase φ = 0) and a tail (with nominal phase
φ = π

2
). This conventional orientation allows the recovery of device position and attitude

up to any rotation around the head-tail axis, for a total of 5 degrees of freedom, which
should be enough for most applications. A third light source with a different phase shift
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Figure 8.23: A prototype of the pulsating LED device proposed in this section (left) and
two plots expressing using JET scale the strength of the recovered signal and its phase
(right). Signal strength is shown as the logarithm of the normalized intensity and phase is
in radians.

could be added to obtain a complete reference frame, however we feel that this would
increase the complexity of the system for a marginal gain. Finally, by using different
devices pulsating at different frequencies, multiple objects can be recognized. In Fig.
8.23 we show an actual implementation of the device using two infrared LEDs that can
be made pulsating at a total of 16 different frequencies, selectable by means of a set of
four switches that are accessible on the controller board. We used this device (and some
physical modification) throughout all our experimental evaluation. It should be noted that
the use of IR light is not a requirement of the design, nor it is mandatory to use LEDs.
In fact, we will also demonstrate the feasibility of an implementation using a smartphone
operating with visible light. Indeed the actual implementation of the light-emitting sys-
tem should be chosen according to the specific application scenario. To this end, we also
propose two quite different applications adopting the general approach.

Simultaneous position and time recovery

As stated before, the recognition and time recovery happens over a sequence of several
frames. The exact number of frames to be used depends on the trade-off between latency
and accuracy. In general we assume to work over n frames. We refer to the intensity of
pixel p in frame i as Ipi and to the timestamp of frame i as Ti. Note that this timestamp
does not necessarily report the exact capturing time and it is not assumed to be coherent
among all cameras (due to the many reasons described in the introduction), in fact we will
rely on additional information for camera synchronization. However, within the limited
span of a few frames, and for each individual camera, we can assume that (locally) the
drift due to time bias would be negligible. As the number of frames needed for detection is
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quite small, this is a reasonable assumption. Since the signal emitted by each light source
is characterized by a specific frequency, we are now able to probe the identity of each
pixel p by correlation with a sinus wave of the expected frequency f . This is performed
by computing over a total of n subsequent frames, the complex number:

Cp(f) =
n∑
i=1

cos(2πfTi)Ipi + i

n∑
i=1

sin(2πfTi)Ipi (8.16)

From this number we can recover for each pixel p in the imaging plane both a measure
of response intensity γp(f) = |Cp(f)| and a phase φp(f) = arg(Cp(f)). In Fig. 8.23
we show, using a JET color scale, an example of the scalar fields γ(4) and φ(4) computed
over a sequence of frames depicting two devices placed side-by-side, the first one with an
operating frequency of 4hz and the other set at 5hz. Notice that, even with a logarithmic
scale, the second device is almost completely filtered out with respect to intensity and the
recovered phase is unreliable. This effective filtering can be exploited to recognize each
device, one at a time. Specifically, when probing frequency f we define for each pixel p
the associated relevant blob as the set:

Bp(f) = { q | γq(f) > ε, q ∼γ>ε p } (8.17)

where q ∼γ>ε p means that p and q are connected by a path within the 8-neighbor graph
built over all the pixels with γ > ε. Of course relevant blobs are a quotient set of the
image plane since q ∈ Bp(f)⇒ Bq(f) = Bp(f). For each relevant blob we can compute
its intensity and phase as:

Γ(Bp(f)) =
∑

q∈Bp(f)

γq(f) (8.18)

Φ(Bp(f)) = arg

 1

|Bp(f)|
·
∑

q∈Bp(f)

exp(i · φq(f))

 (8.19)

The global intensity for a blob (Eq. 8.18) is not normalized by the number of pixels it
contains. This is due to the fact that the blob with higher response are also the one which
count a large number of compact members. Differently, small blobs containing a few spik-
ing pixels would generate a lot of false positives. Note also that the complex formulation
of Eq. 8.19 is required to avoid instability due to the periodicity of the measure.

We are now able to define the head h and the tail t of the device as two pixels for
which the following conditions hold:

q 6= h, t⇒ Γ(Bh(f)) ≥ Γ(Bq(f)),Γ(Bt(f)) ≥ Γ(Bq(f)) (8.20)
∀q ∈ Bh(f), γh(f) ≥ γq(f) (8.21)
∀q ∈ Bt(f), γt(f) ≥ γq(f) (8.22)

sin(Φ(Bt(f))− Φ(Bh(f))) > α (8.23)
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Condition 8.20 guarantees that the selected head and tail blobs are the ones with higher
overall intensity. Conditions 8.21 and 8.22 select the two single pixels with higher in-
tensity for each blob. We used this criteria with all the experiments we performed in
the evaluation section and we obtained good performances. Note, however, that different
rules could be applied to extract head and tail features, including finding the sub-pixel
barycenter of each blob or computing an average coordinate weighted on the intensity.
Finally, condition 8.23 guarantees that the tail feature exhibits a phase shift of π

2
radi-

ans with respect to the head. Threshold α can be tuned to make the check more or less
restrictive.

The interesting thing about our method is that the very same process used for detection
is immediately available to compute the time skew between two cameras observing the
same device. Given cameras a and b, with observed head phases Φ(Ba

h(f)) and Φ(Bb
h(f))

we can compute the time drift between them as:

∆ab
T (f) =

{
Φ(Bah(f))−Φ(Bbh(f))

2πf
if Φ(Ba

h(f))− Φ(Bb
h(f)) ≤ π

Φ(Bah(f))−Φ(Bbh(f))−2π

2πf
if Φ(Ba

h(f))− Φ(Bb
h(f)) > π

(8.24)

Indeed we are doing a clear assumption with Eq. 8.24. We assume that camera a does
not anticipate or posticipate camera b for more than half a period, that is 1

2f
. In practice,

it is very easy to meet such condition. In fact, for the sampling to be frequent enough to
reconstruct the signal, the pulsating frequency of the device should be at least an order
of magnitude lower than the sampling frequency of the cameras. This, in turn, means
that we are seeking a coarse time alignment between cameras that can tolerate an error
measured in several frames. In most scenarios obtaining such level of synchronization is
trivial even adopting naive methods.

Image-Plane Interpolation and Triangulation

If we want to triangulate point pa, observed by camera a, with point pb captured with
camera b at a slightly different time, we must first compute a virtual point p̂b corresponding
to the estimated position on the image plane b of the tracked object at the moment pa was
observed. In order to get a correct estimate we should know the position and direction
of the feature in the Euclidean space, to compensate for the non-linearity of projective
geometry. Unfortunately, this is exactly what we want to obtain through triangulation.
However, since we can assume the displacement of the point to be small between two
frames, it is quite reasonable to accept a linear approximation:

p̂b = pb + (p′b − pb)∆ab
T (f)frb (8.25)

= (1−∆ab
T (f)frb)pb + ∆ab

T (f)frbp
′
b (8.26)

where p′b is the tracked point in the following frame of camera b and frb is its frame
rate (which can be different from the one kept by camera a). Note that, in order to get
a more reliable interpolation (and to keep it convex), it would be better to have that 0 ≤
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∆ab
T (f) < 1

frb
. Indeed, this is an easy condition to meet, in fact it is immediate to show

that it is always possible to find an integer number of frames to be skipped or anticipated
in camera b to make this happen. Note also that, if the frame rate of camera b is not known
or its unstable, we can, once again, exploit the intrinsic synchronization method offered
by our approach. Specifically we can estimate such frame rate on a frame-by-frame basis
by computing the time shift between camera b and a conventional virtual camera b′ that
is always one frame ahead of b, obtaining the approximation ˆfrb = 1

∆bb′
T (f)

. Once both
pa and p̂b are known, the 3D position of the point can be recovered by minimizing its
reprojection error with respect to the two observed features [107]. Finally, if more than
two cameras are available, an estimate feature position can be computed separately for
each of them and a multi-camera triangulation method can be used [28, 63].

Implementation Details

Equation (8.16) must be computed for each pixel p of the frame, resulting in the contin-
uous production of matrices representing the intensity of frequency response C (such as
these shown in Fig. 8.23). Such computation, at frame number n+1, has to be performed
over the history of the previous n frames. It is not a problem to have such frames at hand,
since they are always stored in a circular buffer or similar data structures (depending on
the camera driver). However the number of calculations involved could be quite large. In
order to guarantee a real-time performance, we applied the following precautions:

• At each new frame, cos(2πfTi)Ipi and sin(2πfTi)Ipi are stored in two additional
circular buffers. This way Equation (8.16) is computed incrementally by adding
values from fame i and subtracting those from frame i− n;
• If the frame rate can be assumed to be constant within the n frames, then the values

of cos(2πfTi) and sin(2πfTi) can be pre-computed in a fixed lookup table;
• If the camera captures only a small range of discrete intensities (i.e. from 8 to 12

bits), such lookup table could be made a lookup matrix accounting for Ipi on rows;

By means of these optimizations, the actual number of per-pixel operations became
modest and with our setup (Core i7 4470, 640x480 camera, n = 8, single thread) the
overhead was well below 1ms. If further performance is needed or the system must be
implemented in low powered embedded devices its easy to implement this approach on
GPU. This can be done easily even on the entry level ARM processors.

In addition to performance considerations, there is another key practical problem that
must be addressed to achieve a robust implementation. Equation (8.16) is able to de-
tect a stable signal only if a significant portion of image pixels captures the same LED
throughout all the n frames in the observed sequence. While this does not necessarily
imply the marker to be still, if it moves too fast the frequency detection step will miss,
hindering the whole pipeline. Luckily this will not result in false positives, since it is
quite unlikely that the sampling of random or partially random pixel values would result
in a coherent enough signal. Moreover, even if this happens for a large enough blob, the
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phase shift check would still prevent improper detection. Nevertheless, while false posi-
tive are avoided, fast movements will still result in the inability to give a correct identity
to the blobs and to assess the associated time drift. In our implementation we address
this problem by performing standard blob tracking and, if unable to reliabily assign an
identity to a blob, by falling back to the last known reliable label. In such conditions,
∆T is approximated by assuming the camera framerate to be constant enough during the
unreliable frames. Of course, the time drift will be estimated again as soon as the phase
recovery will be feasible again. Finally, it should be noted that in our setup we are ap-
plying Equation (8.16) to the whole image and using always the image plane reference
frame. A different option could be to compute Cp over each tracked blob, using its center
as the origin of the frame. Albeit we did not needed to do so for the tested applications,
this precaution does not require any specific methodological change and could help when
dealing with never-stopping continuous motion.

8.3.2 Experimental Evaluation

All the following experiments, including the two described applications, have been per-
formed using PS3 Eye cameras equipped with a removable infrared filter, running at 75
frames per second. All the cameras were connected to the same PC, due to the need of
obtaining a ground-truth timestamp. This ground-truth can be deemed as accurate since
the PS3 Eye cameras are well known for steady and constant capturing feeds and pre-
dictable latencies. Still there is no guarantee that two (or more) cameras will shoot at the
same time. With all the following experiments we will use the term GT to refer to the
correct timestamps, Frame Synch to refer to the synchronization obtained by assuming
that frames have been shot at the same time (which is not the case in many setups) and
Phase Synch to refer to the phase-based synchronization. Since our method could work
with any light emitting device, we first made a test to study the impact of the light source.
We modified the device shown in Fig. 8.23 changing the infrared LEDs with white ones,
furthermore we also implemented a light emitting application on an Android phone. Such
application simply displays two large dots on the screen, simulating the behaviour of the
actual device (of course this is not practical in many scenarios, but it is worth testing).
We placed the three devices on an horizontal surfaces with a characterizing frequency of
4hz, and we captured a video of about one minute (5170 frames) by moving the camera
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Figure 8.24: Discrepancy between estimated phase and uncorrected frame time.
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Figure 8.25: Reconstruction of the trajectory of a pulsating LED mounted on a rotating
stage (left). Plot of the Z coord (center). Detail of the Z coord plot (right).

(thus obaining similar motions for all the devices). We probed frequencies of 3hz, 4hz
and 5hz, obtaining the following errors over the whole video.

Device Undetected % Misclassified %

White LEDs 16 0.31 20 0.39

Infrared LEDs 9 0.17 18 0.35

Smartphone 32 0.62 61 1.18

Where Undetected means that the device was not recognized at any frequency (probably
due to motion blur) and Misclassified means that it was recognized at the wrong frequency.
According to these results, we chose to use the device based on infrared LEDs for our
evaluation. Still, it should be noted that also the other two light sources are able to achieve
very good performance levels, thus allowing for several implementations.
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Figure 8.26: Reprojection error with the method described, the ground-truth, frame-based
synchronization and artificial delay for circular motion and random trajectories (first two
plots), and effect of the speed over accuracy (third plot).
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Impact of Wrong Synchronization

In Fig. 8.24 we show the discrepancy between the frame time estimated assuming that
the cameras are shooting at the same time and the phase actually recovered by the si-
multaneous localization an synchronization. It is apparent that the drift is about a couple
hundredths of a second. Assuming that the tracked object is moving at a speed of 1 m/s
(which is not particularly high) this would result in a spatial displacement in the Euclidean
space of several cm, which could be very relevant, depending on the application scenario.
To this end, we can state that the drift effect is measurable, relevant and its able to pro-
duce significant inaccuracies in position recovery. To qualitatively evaluate the effect of
wrong synchronization over position reconstruction we mounted the device on a rotating
stage and we captured a long video sequence. We show the trajectory reconstructed using
the three described methods in Fig. 8.25. Note that the device performed several ”orbits”
during the whole length of the video captured. This has been done to separate repeatable
errors due to constant bias (i.e. camera calibration errors) from random uncertainty due
to synchronization issues. Here, the trajectory produced without phase-based synchro-
nization is by large the most unstable. Differently, the one produced using the proposed
method is more coherent with the ground-truth. The small discrepancies are probably due
to phase estimation errors related to the assumption of negligible time drift during the few
frames used for phase estimation and, of course, to random sensor noise. In order to give
an idea of the impact of time discrepancy, in Fig. 8.26 we plot the average and standard
deviation of reprojection error obtained using GT, Frame Synch and Phase Synch over
two large sets of video sequences capturing respectively a circular movement and a ran-
dom trajectory with varied speeds. In addition we also plotted the error that would be
obtained by adding to GT an artificial offset (ranging from 0.1 to 1 frames) to each frame
of the video (Artificial delay curve). Note that the first three averages are represented

0 20 40 60 80 100 120
50

60

70

80

90

100

time (s)

di
st
an
ce
(m
m
)

synchronized
non synchronized

0 20 40 60 80 100 120
50

60

70

80

90

100

time (s)

di
st
an
ce
(m
m
) synchronized

non synchronized

Figure 8.27: Effect of the synchronization on the stability of the tracking
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Figure 8.28: An interactive whiteboard system implements using the described design
(left). Effect of the synchronization on repeatability (right)

by horizontal continuous lines and their standard deviation use dotted lines of the same
colour. Not also that the overall Frame Sync values and the Artificial delay curve meet
around 0.6 frames, which we could deem to be a coarse estimate of the drift between
uncorrected cameras. From this test we can see that even a time drift as small as one fifth
of frame (which could indeed result very easily from a network of independent cameras)
can produce significant inaccuracies.

Effects of Speed

With the last part of Fig. 8.26 we study the effects of speed over reprojection error. To
produce this scatter plot we used all the videos captured so far to obtain a wide range of
different speeds. It can be seen that the proposed method can (on average) guarantee ac-
curate results even with moderate speeds. Differently, naive frame-based synchronization
introduces significant rms errors that seems to be directly proportional to the speed. Re-
garding the few points with large rms at higher speeds, we think that they are mainly due
to image plane localization error due to motion blur rather than to wrong synchronization.

Effect of Distance and Blob Size

It could be interesting to evaluate the breaking condition of the system with respect to the
size of the observed blobs, which, in turn, depends on the distance of the device from the
cameras.

Distance 2 m 3 m 4 m 5 m

% of undetected markers 0.19 1.42 20.1 40.3

Average pixels in blob 42.1 15.3 7.81 4.12

We performed this test using the device based on infrared LEDs and for distances ranging
from 2 meters (the standard usage distance for our setups) to 5 meters (the maximum
distance before detection dropped below 50%). The performance seems to be satisfactory
until the blobs contain a reasonable number of pixels. As this number drops the detection
start to become unreliable with the marker undetected in more than one frame over five
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for a distance of 4 meters and more two frames over five at 5 meters. Of course different
results can be obtained by using bigger or brighter LEDs and higher resolution cameras.

Dealing with a Dynamic Camera Network

Equation (8.24) makes the strong assumption that a coarse drift estimation is available
and that it is more accurate than half a period. This condition could be difficult to achieve
if cameras are on different networks and/or are dynamically added. To address such cases,
we propose a very simple criteria:

• for each new camera b assume maxp to be an upper bound for the integer number
of periods contained in the unknown correct value for the time drift ∆ab

T between b
and the reference camera a we want to use for triangulation;
• perform a different triangulation for each value of p between −maxp and maxp,

assuming drift pT + ∆ab
T (f) where ∆ab

T (f) is the last reliable value from Equation
(8.24);
• keep the value of p yielding the triangulation with lower reprojection error as the

sought coarse approximation.

If more cameras are already in the network, the criteria can be applied for each of them
and majority voting can be performed. We tested this criteria by simulating the described
scenario using a network of four cameras. All the cameras were connected to the same
computer, thus their drift were known. However we added a random artificial delay to
the fourth camera in order to simulate general multi-period drift. It is very interesting
to note that, differently from identification, coarse synchronization would benefit from
movement. Indeed, if the marker is still, there is no disambiguation through triangulation,
since all the attempts will produce the same reprojection error. In the following table we
show the average percentage of correct coarse synchronizations of the fourth camera (i.e.
estimates for p) for different speeds of the marker.

Marker speed 0 m/s 0.1 m/s 0.5 m/s 1 m/s

% of correct estimates 4.7 96.3 100 100

The marker has been placed on a plane at about 2 meters from the network and recorder
in a 3 minutes long video. The speed has been estimated over the image plane. The
target frequency was 4hz and maxp was set to a value of 10. From these results it can be
observed that synchronization is basically random when the marker is still, however even
slow movements enable a correct estimate. Obviously, coarse synchronization does not
need to be performed continuously as reliable values can be kept valid once recovered for
a new camera.

Application: interactive whiteboards

The second example application we are proposing is an interactive whiteboard. In this
case the controller and the two LEDs have been embedded in a pen-like object that can be
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used to draw or to interact with the content of the whiteboard (see Fig. 8.28). Moreover,
the design has been changed a little in order to include user buttons. Such buttons have
been implemented by connecting them to the dip switches of the controller that are used
to set the operating frequency, thus allowing to change the device ID (and its function)
on the fly. This specific setup relied on a network of 4 cameras. Each pair of cameras
was triangulated separately and a rigid registration method has been adopted to estimate
the position of the pen [112]. As for the previous application, its is difficult to obtain
a reliable ground truth. We performed our evaluation by capturing two pens connected
together by a rigid bar an by measuring the distance between their head LEDs. While the
exact measure is not known, a well-behaving tracker is expected to yield the same value
over time and throughout all the working volume. In Fig. 8.28 we show a scatter plot of
such measure with respect to the z axis. The introduction of phase-based synchronization
result in a noticeable enhancement of the measure repeatability.
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8.4 Design and Evaluation of a Viewer-Dependent Stereo-
scopic Display

8.4.1 A Viewer-dependent Display System
The setup we are introducing is made up of three main components (see Fig. 8.30). The
first one is a planar display. In our case it has been implemented with a short-throw digital
projector placed under a translucent scattering surface. The second component is a pair
of modified shutter glasses. They have been augmented with two pulsating IR LEDs that
can be easily detected with a low false positive rate. The last component is a pair of IR
enabled cameras, that will be used to track the two LEDs, and thus the user pose.

The main purpose of this setup is to give a correct and timely estimation of the user
point of view and thus allowing to render the scene on the surface in a manner that offers
the correct projection with respect to the user. In order to give an idea of the resulting
effect we reported some qualitative results in Fig. 8.29. The first two columns show the
scene as viewed by the user (putting the camera behind the glasses), while the remaining
shots show how the displayed images appear from different points of view.

Tracking of the User Pose

While many other systems use some kind fiducial markers to estimate the user pose, we
chose to avoid any kind of recognition technique in the spatial domain and to perform the
identification within the time domain. To this end we modified a pair of shutter glasses
by adding two infrared LEDs that pulse at a constant frequency (see Fig. 8.31). By using
different frequencies we are able to locate each pair of LEDs and to assign an unique

Figure 8.29: An object shown on our viewer-dependent display as seen from different
angles. The images in the first two columns have been obtained by putting a camera
behind a shutter glass lens.
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label to them. Since we set a π
2

radians phase difference between the left and the right
led, it is also easy to discriminate between each eye and thus to give a better estimation of
their position. The led frequency is selectable by means of a set of four switches that are
accessible on the controller board, allowing several concurrent users. Of course, in order
to support more than a single user the shutter glasses and the projector must be configured
to show different images for different users. This is supported by many recent mainstream
display systems, however it is not the case for the system tested within this study.

Differently from methods that perform identification by processing object appearance
in the image domain (i.e. fiducial markers), our approach allows to use very small features
(indeed point light sources) that are detected equally well both near or far from the camera.
Of course the identification requires several frames, however, once a pair of glasses has
been recognized, its LEDs can be tracked on a frame-by-frame basis without needing
a new recognition as long as the tracker does not miss. Additionally, the small size of
the light sources grants a good precision with their localization and the use of infrared
light makes it possible to filter out most of the scene clutter. In fact, when a camera
equipped with the proper infrared band-pass filter is used, only the signal generated by
the pointing devices should be detected with an intensity that is non-negligible. Such
signal will produce mostly unimodal intensity blobs whose size depend on the distance
from the camera, and whose local maximum is located at the center of the led.

In our setup we used some PS3 Eye cameras equipped with a custom filter, modified

Figure 8.30: The view-dependent display and tracking system setup described.
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Figure 8.31: Filtering of the signal emitted by two shutter glasses at different operating

frequencies. Note that the response strength is highly sensitive to the filtering frequency.

Furthermore, phase detection produces garbage data when not applied to a signal with

corresponding frequency.

for infrared, running at 75 frames per second. Each frame acquired is then thresholded

with an adaptive method [169]. The resulting blobs are detected and fitted with paramet-

ric ellipses using the OpenCV library [43]. Such ellipses are thus refined on the original

image with subpixel accuracy [170]. Each of their respective central points p is tracked

between subsequent frames and labelled with the timestamp of the frame itself and the in-

tensity of the associated signal. Such intensity has been computed as the average graylevel

detected within a radius of three pixels from the tracked point. We refer to the timestamp

(in seconds) of point p in frame i as t(p, i) and to its intensity as I(p, i).
Since the signal emitted by each led is characterized by a specific frequency, we are

now able to probe the identity of each point p by correlation with a sinus wave of the

expected frequency f . This is performed by computing over a total of n subsequent

frames, the vector:

Cp(f) =

(∑n
i=1 cos(2πft(p, i))I(p, i)∑n
i=1 sin(2πft(p, i))I(p, i)

)
(8.27)

The length of Cp(f) is proportional to the correlation between the signal associated to p
and the reference frequency f . Further, the angle between Cp(f) and the horizontal axis

can be regarded as the phase of the signal emitted by p. This two facts offer a practical tool

for rejecting false positive points that are not generated by pulsating LEDs, and also for

discriminating each user from the others in multiuser scenarios. The number of frames,

n, required to compute Cp(f), depends on the trade-off between accuracy recognition

speed. While 3 frames are the theoretical minimum, in our test we found that 9 frames are

a good choice to cope with the unavoidable noise coming from the imaging process. In

Fig. 8.31 we show the effectiveness of the frequency probing. We observed two glasses

standing on a horizontal surface emmitting signal respectively at 4hz and 5hz. The first
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row in Fig. 8.31 shows the signal strength computed through Eq. 8.27 (logarithmic scale).
The second row shows the detected phase, which is stable and correct only when the LEDs
are filtered through the correct frequency slot.

Finally, the 3D positions of the detected LEDs are obtained by triangulation, using the
method proposed by Hartley and Sturm [107] and the positional noise if filtered slightly
by using a linear Kalman filter [121].

Viewer-dependent Rendering

After the triangulation of the IR LEDs, the position of each user eye can be determined
along the line connecting them. This is a reasonable approximation since the LEDs are
placed by construction on the side of the eyes. The exact distance between the LEDs and
the estimated projection center of the eyes depends on the interocular distance of the user,
which can be kept as a parameter.

For each eye the actual projection can be computed easily if we know its position
in the world reference frame which we conveniently place on the display surface and
aligned with its two main axis (see Fig. 8.33). In this case, being n and f respectively
the z coordinates of the horizontal near and far planes, and (ex, ey, ez) the position of the
observer, the projection matrix for a general 3D point can be computed as:

Pm =


2
w

0 0 −1

0 2
h

0 −1

0 0 1 0

0 0 0 1




1 0 ex/ez 0

0 1 ey/ez 0

0 0 ez−f
ez(f−n)

(f−ez)n
ez(f−n)

0 0 1/ez 1


The rightmost matrix projects the perspective frustum into normalized device coordi-

nates, considering a display plane that lies on z = 0 and spans from −1 to 1 on both x
and y directions. The leftmost matrix scales and translates the obtained x and y according
to the size of the display surface. The matrix Pm can be applied directly with any display
framework that supports projection matrices, such as OpenGL or Unity.

Finally, in order to compute the position of the observer with respect to this new world
reference frame, we need to know the relative motion between such frame and the cameras
used for triangulation. We compute this rigid transformation using the coordinates of the

Figure 8.32: The modified glasses and the fiducial marker used for testing purposes.
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World reference frame

Far plane (z = f)

Near plane (z = n)

Observer position (ex, ey, ez)

Figure 8.33: The relation between geometric entities within the setup.

four display corners in the cameras reference frames. These coordinates are obtained by

triangulation of a single led placed alternately on the four corners.

8.4.2 Evaluating a Viewer-dependent Display
Given the subjective nature of this type of displays, it is very difficult to supply some

quantitative assessment about their accuracy (or even to define what really does ”accu-

racy” mean). In fact, most of the literature limits the evaluation section to qualitative

shots of the views or to subjective reporting of the quality perceived by the user. While

this is perfectly fine for many application scenarios, we would like to propose a suitable

method to measure the performance of a viewer-dependent rendering setup. To this end,

we will account for the three main features that characterize this kind of systems: the

accuracy of the user pose estimation, the compliance between the scene that the user is

expected to observe and what he really sees, and finally the effect of the lag introduced

by the whole pose estimation/display loop.

We propose to perform the evaluation by means of a specially crafted setup (see

Fig. 8.32). This includes a further modified pair of shutter glasses, which we augmented

with a camera mounted behind a lens, and a set of Rune-Tag fiducial markers [?]. The

measuring experiment is carried on by placing a physical tag on the origin of the world

coordinate system (i.e. the upper-left corner of the table) and by displaying a rendered

tag inside the virtual scene. That can be in any position and with any angle. The typi-

cal experimental run involves the recording of a video while the camera is moving along

some pattern. Within such video the camera should be able to capture both the reference

physical marker on the table and the virtual marker displayed by the system. For each

frame it is possible to compute:
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Figure 8.34: Evaluation of the accuracy in the pose estimation and positional error com-
mited on the image plane.

• the pose of the camera center as resulting from the led tracking and triangulation
(Tpose);

• the pose of the camera center obtained using the physical marker (Mpose);

• the centers of the ellipses on the image plane of the virtual marker as seen by the
camera (Ccenters);

• the centers of the ellipses on the image plane of the virtual marker as reprojected by
considering the camera pose, its intrinsic parameters and the position of the virtual
marker in the world coordinate system (Rcenters). To this end, we use the location of
the camera obtained with Tpose and the orientation obtained with Mpose. This way
we guarantee the most faithful orientation of the image plane while still adopting
the estimated point of view.

Note that Mpose is expected to be significantly more accurate than Tpose, since the
Rune-Tag used, in opposite to the two LEDs used for Tpose, offers more than a hundred
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of ellipses that can be used to assess the camera pose. Moreover, errors in Mpose only
depends on the intrinsic parameters of the camera (which is a high-end computer vision
camera with low distortion), while Tpose if affected by the intrinsic calibration of each
IR camera, by the calibration of their relative motion and also by the estimated location
of the world reference frame. For this reasons we can consider Mpose as a reasonable
ground-truth.

Pose accuracy

We propose to assess the accuracy of the pose estimation as the absolute distance between
the camera center computed by Mpose and Tpose. Note that there is no point in considering
the orientation of the camera, since it has no influence in the image formation process
on the display. Note also that we expect Mpose and Tpose to be separated by a constant
offset, since we cannot guarantee that the center of projection of the camera lies exactly
on the line that goes through the two LEDs. This is also true for the user eyes and is a
known approximation accepted by the approach (the effects of such approximation will
be evaluated in the following section).

In the upper half of Fig. 8.34 we show this distance measured along three different
types of motions: respectively a smooth movement along a curve, a slow movement along
a straight line and an acceleration with a rotation around the same axis. The standard
deviation of the distance under each condition is a good indicator of the ability of the
tracking to be resilient to random error source (albeit still biased). We call this measure
pose accuracy. In the three videos tested we obtained a pose accuracy respectively of
2.63, 1.72 and 8.67 mm.

Reprojection accuracy

The evaluation of the pose estimation accuracy, while assessing the stability of the tracker,
gives little insight about the effects of various error sources on the perceived scene. To
better study this aspect, which is the primary goal of a viewer-dependent display sys-
tem, we propose to compute the RMS error between the points observed by the camera
(Ccenters) and the coordinates on the image plane obtained by reprojecting the centers
of the ellipses belonging to the virtual marker (Rcenters). In practice, this value gives a
measure of the compliance between the scene that is actually observed and the scene that
the system expects the user to observe. Ultimately, the reprojection accuracy accounts
for all the error sources (including the pose estimation bias) and supplies a value that is
meaningful also from a perception perspective.

In the lower half of Fig. 8.34 we show this measure, that we call reprojection accu-
racy, computed over time within the same videos that were used for measuring the pose
accuracy. In the three video tested we obtained an average reprojection accuracy respec-
tively of 7.06, 3.35 and 9.97 pixels (over a 1280x1024 pixels image).
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Figure 8.35: Evaluation of the effects of the angle between the projection on the epipolar
plane of the line connecting the two camera centers and the two LEDs.

Other evaluations

We propose two additional tests that can be used to evaluate the performance of a viewer-
dependent display system.

The first one is the study of the observed led distance and of the reprojection RMS
with respect to the angle between the line between the two camera centers and the one
connecting the two LEDs (projected on the epipolar plane). In Fig. 8.35, we show that at
grazing angles both measures become less stable.
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Figure 8.36: Evaluation of the effects on the reprojection error of different heights for the
virtual marker.
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The second test is designed to measure the isotropy of the perception throughout dif-
ferent zones of the (virtual) scene volume. To perform this evaluation, the virtual target
has been randomly placed at various heights and the reprojection accuracy has been mea-
sured. In Fig. 8.35, we show a scatter plot of the reprojection accuracy with respect to the
target height. It can be observed that there is no apparent relation between the distance of
the target from the display and the perception error.
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8.5 Evaluating Stereo Vision and User Tracking in Mixed
Reality Tasks

In the context of mixed reality the quality of interaction between a user and a virtual scene
is strongly affected by the correct perception of the virtual world and by its realistic in-
tegration with the real world. Two key factors enabling a correct perception of a virtual
scene are the stereoscopic vision through proper displays showing a different image to
each eye, and a correct perspective rendering matching the scene projection point of view
with the user head position. A correct 3D perception holds if and only if the user’s op-
tical system exactly replicates the one that produced the scene projection; otherwise, the
perceived scene will be distorted as the 3D objects reconstructed by the user’s brain will
diverge from the original in size, position and proportions.

Figure 8.37 shows some examples of correct and wrong perspective renderings. The
first two images (top row) have been taken from a point of view corresponding to the
projection point of view of the rendering system, and show a correct perspective. The
last two images (bottom row) have been taken from point of views not corresponding to
the projection point of view, hence the resulting perspective is wrong. The effect can be
worsened by the fact that points that would originally project into incident lines of sight
would probably result skewed when observed from the wrong point of view. This, in turn,
would supply to the brain data about the spatial properties of the scene that cannot be
correctly interpreted in any way, resulting in an unpleasant feeling of unreality. These
shortcomings, not really addressed by the entertainment industry, are in fact the primary
responsible for the fluctuating quality of the user experience in 3D theaters.

Context of the Evaluation

A visualization consistent with the user point of view enables interaction models based on
the integration between the real and the virtual parts of a mixed reality environment, where
objects and data can be actively inspected in an immersive way and directly manipulated
with physical tools, as in tangible interfaces. A display that respects a geometrically
correct projection allows the blending and comparison of physical and virtual objects, as
they all belong to the same metric space. This, in turn, enables important mixed reality
applications within the context of industrial design and prototype validation as well as
training systems that mix real objects and tools with virtual ones. To this end, tracking
systems are exploited to estimate the position of the user head (and of his/her eyes through
interpolation) and to drive the correct rendering of the virtual scene. The resulting system
is usually referred in literature as a perspective-corrected (or subjective) display.

Still, for this kind of application to be effective, the user perception of the scene should
be good enough for such blending to be seamless, i.e., the user must be able to correctly
perceive not only the correct position and perspective, but also the correct size and propor-
tions of the virtual objects he/she interacts with. It is therefore of paramount importance
to be able to evaluate these properties in an accurate and objective way. We think that
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Figure 8.37: Correct view-dependent rendering (top row) and inaccurate scene perception
resulting from wrong viewpoints (bottom row).

it is important to separately assess, in a subjective system, the role of each functionality
(namely, stereoscopic vision and viewer-dependent rendering) in order to know, in the
design and use of a 3D interface, to what extent the different functionalities affect the
perception of a correct integration between the real and virtual objects.

We designed an evaluation procedure aiming at measuring the ability to perform some
tasks requiring the interplay between real and virtual objects in a mixed reality context.
The procedure is executed on an installation implemented using a baseline stereoscopic
perspective-corrected display system, where we can accurately calibrate the user position
and enable and disable independently each feature: 3D vision and user tracking. In such a
way we are able to evaluate their role with respect to the performance of undertaken tasks
in a quantitative an statistically meaningful way. While some studies have been recently
proposed (see Section 7.3.1), they are for the most part qualitative or focused on specific
features of the evaluated system. To our knowledge, this is the first time that a systematic
analysis is presented.
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World reference frame

Far plane (z = f)

Near plane (z = n)

Observer position (ex, ey, ez)

Figure 8.38: The relation between geometric entities within the setup.

Our work applies to environments where the user interacts with a mixed real/virtual

scene in proximity, integrating real and virtual objects in the execution of tasks requiring

the correct understanding of the spatial relations between them. These conditions largely

correspond to the system described by Krueger et al in [133, 134], known as the Respon-
sive Workbench, which models a wide range of activities in educational and professional

applications.

After a brief description of the setup and projective principles involved in the im-

plementation of the viewer dependent rendering display in 8.5.1, 8.5.2 briefly describes

the evaluation procedure used to assess the quality of 3D correct perception. Finally, the

actual evaluation on a set of test cases is done in 8.5.3.

8.5.1 Viewer-dependent Rendering

We have used the tracking setup described in 8 to augment a pair of shutter glasses to be

used with a commercial DLP projector. Once the position of the two IR LEDs is found,

the position of each user eye can be determined along the line connecting them. This is

a reasonable approximation since the LEDs are placed by construction on the side of the

eyes. The exact distance between the LEDs and the estimated projection center of the

eyes depends on the interocular distance of the user, which can be kept as a parameter.

For each eye the actual projection can be computed easily if we know its position

in the world reference frame which we conveniently place on the display surface and

aligned with its two main axis (see Fig. 8.38). In this case, being n and f respectively

the z coordinates of the horizontal near and far planes, and (ex, ey, ez) the position of the
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observer, the projection matrix for a general 3D point can be computed as:

Pm =


2
w

0 0 −1

0 2
h

0 −1

0 0 1 0

0 0 0 1




1 0 ex/ez 0

0 1 ey/ez 0

0 0 ez−f
ez(f−n)

(f−ez)n
ez(f−n)

0 0 1/ez 1


The rightmost matrix projects the perspective frustum into normalized device coordi-

nates, considering a display plane that lies on z = 0 and spans from −1 to 1 on both x
and y directions. The leftmost matrix scales and translates the obtained x and y according
to the size of the display surface. The matrix Pm can be applied directly with any display
framework that supports projection matrices, such as OpenGL or Unity.

Finally, in order to compute the position of the observer with respect to this new world
reference frame, we need to know the relative motion between such frame and the cameras
used for triangulation. We compute this rigid transformation using the coordinates of the
four display corners in the cameras reference frames. These coordinates are obtained by
triangulation of a single led placed alternately on the four corners.

8.5.2 Evaluation of perspective-corrected display on a responsive work-
bench

The quantitative evaluation of a 3D interface is a complex matter because the features on
which the evaluation is done are based on the relations between the virtual scene and the
user’s physical world; evaluation depends also on the application.

In mixed reality contexts as discussed above, direct interaction and manipulation on
a responsive workbench system become possible only if the rendering of the virtual ob-
jects seen by the user and the metric relations between them are compatible with the real
world so that a comparison between the real and virtual part of a scene is meaningful and
quantitatively correct, regardless of the user position within a reasonable area. In envi-
ronments targeted to passive 3D viewing, such as theaters, the distortion for out of place
perspective is less noticeable (yet still annoying), due to the limited range of view angles
with respect to the projection size. In mixed reality applications, where the user interacts
with the scene in proximity, the relations between the real and the virtual objects demand
a precise user adapted rendering.

While the examples shown in Figure 8.37 have been acquired with a camera, in real
cases the only capturing device in the loop is the user. For this reason, the effect of
various error sources can be detected only by indirect measuring, that is by designing an
evaluation procedure where the user is asked to perform a quantitative measure or estimate
about what he/she sees.
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Evaluation Procedure and Quantitative Metrics

We propose an evaluation procedure for quantitatively assessing the accuracy of percep-
tion offered by a 3D system regardless of the specific mixed reality application. For this
reason we decided to involve users only in size and distance measuring operations, i.e.,
to assess the size of some virtual objects or the distance between them in virtual scenes
by using a physical ruler. We are thus able to evaluate the accuracy and repeatability of
direct measuring in a mixed real/virtual visual field. The rationale of this approach is that
the act of measuring a virtual object using a physical ruler captures many of the aspects of
a general mixed reality task, such as pointing at objects and space points, aligning virtual
and real objects, using metric relations, perceiving depth, comparing sizes, searching and
changing suitably the point of view, etc..

To translate the obtained measures into metrics useful for evaluation purposes, we
performed the following three steps:

• all the data obtained are converted in relative errors with respect to the correct
measure of the virtual object. The term correct is of course referred to the measure
that the object should exhibit in the ideal working conditions of the system;
• a cumulative distribution of the error is computed, obtained by a direct sorting of the

values and by computing for each sample the ratio between the number of samples
that exhibit an error value smaller than it and the total number of samples gathered;
• finally, an error probability density function (error PDF) is estimated over the cumu-

lative distribution, using a non-parametric Kernel Density Estimator (KDE) based
on the Parzen-Rosenblatt window method. This is a rather standard statistical esti-
mator that helps us in getting a more accurate idea about the overall error distribu-
tion that underlies the measure processes.

Measuring Bias Once the error PDF has been obtained, we compute the measuring
bias as the average of such function. This metric expresses the ability of the system to
allow the user to perceive unbiased visual representations of the scene, and is proportional
to the total amount of systematic perception error.

It should be noted that this metric should be reasonably free from error sources coming
from the system since, if the scenes have been designed correctly and no macroscopic
errors are present, the translational error introduced by any system bias should not affect
distance measurements.

Measuring Repeatability The measuring repeatability is computed as the standard de-
viation of the error PDF. It measures the error dispersion around the average, that is the
ability of the system to allow the user to take accurate and repeatable measures.

Differently from the measuring bias, with the measuring repeatability the system
could contribute to the metric. This is the case, for instance, if the estimate of the user
head is very unstable and the scene shakes a lot. There is no way to avoid this contami-
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nation, however it is reasonable to think that, if the tracking system is designed properly,
the instability should be negligible.

Testing Conditions

Regardless of the scenes used for testing purposes, we suggest to evaluate separately the
role of stereoscopic vision and tracking. This would help in establishing which feature to
include during the system design according to the content that is going to be displayed. To
this end we propose to assess measurement bias and measurement repeatability under the
following three viewing conditions, which are a subset of the conditions adopted in [232]:

• Tracked binocular (stereo) view: this view corresponds to the standard stereo dis-
play mode with the tracking system enabled. Under this condition the only distor-
tions should be attributable to the unavoidable error sources in the tracking system,
which in our experiment are small (see later) and produce unnoticeable effects on
the test.
• Untracked binocular view: in this view condition stereo vision is enabled, but the

virtual scene is projected from a fixed point of view without correcting the perspec-
tive according to the user position. This view condition provides a standard un-
adapted stereoscopic content, such as in consumer level movies and video games.
The fixed point of view is determined using the initial position of the user standing
at the display surface. In practice, the user can perceive an almost correct perspec-
tive by moving in search of the better viewing position with respect to the scene
fidelity, based on his/her experience. Measure errors derive thus from the inability
in finding the correct point of view used to project the scene.
• Tracked monocular view: this view condition is dual to the previous one, since

stereo vision is disabled, but the perspective is corrected with respect to the user
point of view. This is the approach adopted by many systems described in the
literature to improve interaction with 2D diplays (e.g., [161]) and is similar in spirit
to trompe l’œil images drawn on a flat surface. Lacking any stereoscopic vision, the
depth perception is lost in principle, and left to cues like motion parallax, leading to
larger or smaller measure errors according to the direction of measure with respect
to the line of sight.

8.5.3 Experimental evaluation
In order to test the proposed metrics in a practical scenario and to discuss the role of track-
ing and stereo vision for accurate mixed reality tasks, we used an experimental setup based
on a table similar to the Responsive workbench, equipped with a stereo retro-projection
system and a user tracking system. The choice of a table, i.e., a horizontal surface, instead
of a vertical surface like a stereo monitor or a wall screen, was dictated by the need to test
the ability to perceive depth and perspective with a greater variability of viewing angles,
letting the user moving around the table to observe the scene by several point of view; a
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screen would have presented to the user an almost central perspective with a much limited
range of variations.

The custom built subjective display surface includes two main components: a stereo-
scopic display system made up of a large table (2.5 × 1.5 mt) equipped with a back-
projection film where a 3D DLP projector displays a scene. The user observes the rep-
resented scene through a pair of DLP-link shutter glasses; a user head tracking system
made by augmenting the shutter glasses with two infrared LEDs tracked by an array of
four calibrated cameras to obtain an estimate of their position in space.

Error Sources Assessment

Putting aside macroscopic issues, such as misaligned cameras or swapped left and right
eye frames, we can identify three different error sources:

• Camera calibration errors: this is a systematic bias that is due to statistical errors
in the calibration procedure for the cameras. In practice, the focal length, center
of projection and relative position between cameras are unavoidably estimated with
some uncertainty. This, in turn, leads to a misplacement of the user position.
• Led localization error: this is a (usually) unbiased positional error due inaccuracies

in the localization of the shutter lens LED blobs on the image plane. As for camera
calibration error it produces a slight displacement of the observed scene; however
its unbiased nature leads to zero mean distortions.
• System lag: the limited frame rate of the cameras, added to the projector response

and the image processing time, introduces a lag between the user movements and
the stabilization of the new viewing position. These distortions disappear com-
pletely when the user stops moving.

In practice, all these error sources sum up resulting in a slightly inaccurate estimate
of the user head position, which has shown to be dependent on the speed the user moves
at. Specifically, the standard deviation of the head pose ranges from a minimum of 2.6cm
(when the user does not move) to a maximum of 8.6cm (when the user walks moderately
fast at about 2m/s). Such relation between user movements and accuracy loss is due to
the delay in the feedback loop between cameras and display. For this reason the increased
misplacement only perdures while the user moves continuously and gets back to lower
values as he/she stops. Normally, the user is expected to be almost still while performing
most precision-bound tasks. Using an artificial marker [?, 33] with high repeatability
we evaluated the impact of such head misplacement on the actual display surface. This
evaluation has been made as objective as possible by attaching an actual camera behind a
lens of the stereo glasses and using a registration procedure [19] to estimate the actual
position of the marker with respect to the camera. Subsequently, a virtual marker is
projected according to the viewing position estimated by the tracker and is observed by the
very same camera. Under these assumptions, the average distance between the physical
and virtual markers are a good indicator of the overall system-introduced error. Repeated
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Figure 8.39: Scenes used for the quantitative evaluation. User have been asked to measure
(with a physical ruler) the sizes and distances highlighted with the yellow lines.

tests measured an average displacement ranging from 3 to 10 pixels over a 1080p class
display. While this can seem a large value, especially with big displays, it must be noted
that it mostly results in a global shift of the whole scene: sizes, distances and proportions
of the represented objects are practically unaffected. The reader interested in the details
of the applied measuring methodology can refer to [72].

Measuring Test Design

We designed the test based on the measure of sizes and distances in two mixed reality
scenes using a physical ruler freely chosen among three alternatives (a transparent ruler, a
metallic ruler and a carpenter’s rule, to adapt to different positions and light conditions).
The two scenes have different features. A first scene is composed by two Rubik’s cubes
with a side of about 10 cm floating a few centimeters over the table surface; the second
scene is a synthetic view picturing the famous Saint Mark’s Square in Venice, a virtual
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Figure 8.40: Cumulative relative error distributions as measured from direct experimental
samples
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Figure 8.41: Relative error probability densities resulting from kernel density estimation
computer over the experimental data.

maquette about 60 cm wide.
For each scene the user had to obtain three measures, for a total of six measures for

each execution of the test. Each user performed two consecutive tests, a few made three
tests. The tests were repeated under the viewing conditions described in Section 8.5.2 to
investigate the distortions affecting the measures under each condition. Figure 8.39 shows
the two scenes, the measures requested and two phases of the test execution.

The test involved 11 users (7 males and 4 females) aged 21–27 (avg. 24) for a total
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of 121 different measures: 60 on the Rubik’s cubes scene, 61 on the Saint Mark’s Square
scene. All the users declared to have some previous experience with 3D stereo glasses and
none of them was either stereo blind or color blind; the environmental light conditions
were the same for all the tests. During the test the users were free to move looking for the
best position to perform the measure.

The measures were almost evenly distributed among the three viewing conditions,
with one exception: a height measure in the Rubik’s cubes scene under monocular vi-
sion was excluded from the evaluation because it did not produce meaningful values; this
situation is due to the lack of visual cues coming from motion parallax that could bal-
ance the lack of stereopsis. The scene, indeed, has a uniform background, a very simple
geometry and no visible marks on the floor, causing the impossibility to find a correct
reference point for the measure on the table surface. The reasons for the choice of a scene
so unhelpful for the users will be discussed in Section 8.5.3.

For each test the size and position of the scenes were changed by small amounts to
avoid memory effects in the users across the tests, and to guarantee measure independence
under different viewing angles. Specifically, both scenes where randomly rotated by ±10
degrees and scaled by ±10 percent. To avoid the natural tendency to confirm repeated
measurements of the same object, we explicitly told users that the scene would change
size and orientation after each test. The scenes have been presented in the same order
for all the users, starting with the Rubik setup. The measures have been performed in the
same order as the letters a−−f of Figure 8.39. All the measures were then converted to
percentage errors in order to make them comparable among different scenes and different
features.

Evaluation of Test Results

The results are shown in Figures 8.40 and 8.41. Figure 8.40 shows the cumulative dis-
tribution of the pure data gathered, which is useful to directly analyze the distribution
of measurement errors and to obtain an overall idea about where most data are located.
Moreover, extrema and outliers are more apparent, as well as the data dispersion. Also, in
order to make them comparable, all the errors are shown as percentage offset with respect
to the expected value. In Figure 8.41 we present the plots of the corresponding proba-
bility density distributions as estimated using a non-parametric Kernel Density Estimator
(KDE) based on the Parzen-Rosenblatt window method.

Table 8.2 reports the p-value obtained with a one-way ANOVA test that we performed
in order to further validate the impact of different viewing conditions over the proposed
scenes and measurement tasks. In the following we comment individually the different
cases and the errors revealed. Each case is identified by the name of the scene and the
type of measure.

Rubik: aligned side. The first case (size a in Figure 8.39), whose result is plotted in
Figures 8.40a and 8.41a, corresponds to measuring the side of a Rubik’s cube parallel to
the table edge, i.e., orthogonal to the line of sight of a user standing in front of the table.
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With this scene we obtained respectively for the tracked, untracked and monocular ren-
derings a measurement bias of 3.6, 3.0 and 16.3 and a measurement repeatability of 3.4,
4.4 and 3.7. In this case both tracked and untracked scene renderings produced accurate
measurements, as their error probability density functions exhibit an almost zero-centered
distribution and a relatively low deviation. This is due to the fact that the measured cube’s
side is orthogonal to the view frustum. In fact, the affine transform induced by the lack of
tracking is a skew along the subspace complementary to the line of sight, which does not
affect at all the segments that entirely lie in it.

Differently, the lack of parallax due to monocular vision severely hinders the measure,
showing a clear bias that results in a consistent overestimation of the side length; because
of perspective correction, the projection of the cube on the table surface is in fact regularly
larger than the virtual object. At the same time, the lack of depth cues leads the user
to place the ruler near to the table surface, the only real surface perceived, hence the
overestimation. From this first set of observations, we can speculate that tracking is not
crucial when the object of interest is orthogonal to the line of sight; on the other side,
stereoscopic vision seems essential for properly relate a virtual object with the physical
world.

Rubik: askew side In this scene the measure is done along a cube’s side askew with
respect to the line of sight (size b in Figure 8.39); we obtained a measurement bias of
2.1, 7.0 and 23.8 and a measurement repeatability of 4.3, 4.4 and 7.1, respectively for the
tracked, untracked and monocular renderings. This second test confirmed the observa-
tions made above: we expect the deformation induced by the lack of tracking to affect the
perceived size. In fact, as shown by Figures 8.40b and 8.41b, while the measure made
on the tracked rendering maintains an accuracy similar to the previous experiment, the
measure made on the untracked rendering has a noticeable bias, due to the slanting of the
object if seen from a point of view not coherent with the rendering point of view. Not
surprisingly, albeit being correct with respect to perspective, monocular vision is also in-
adequate, as it leads to very strong bias for the same reasons described in the previous
test.

Rubik: corner height. This test is more complex than the previous two tests, as it relates
more directly the virtual object with the embedding physical space. The user is asked to
measure the height of the cube’s topmost corner with respect to the table surface (size c in
Figure 8.39). This implies putting the base of the ruler in contact with the physical table
and aligning the measuring strip with the virtual cube. Monocular vision is unsuitable
for this task due to the lack of depth cues, and no user was able to place the ruler in an
even approximately correct position, therefore we excluded this vision condition from
the evaluation. For the remaining viewing conditions we obtained respectively for the
tracked and untracked renderings a measurement bias of 2.6 and 8.8 and a measurement
repeatability of 20.0 and 18.1. As in the previous cases, the tracking in scene rendering
is important (Figures 8.40c and 8.41c). While even under correct tracking the measures
gathered exhibit a larger deviation, the lack of tracking leads to unreliable observations.
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Saint Mark: tower to dome distance. The second set of tests are based on a more com-
plex scene depicting a city landscape: a model of the Saint Mark’s Square in Venice. Four
points corresponding to architectural elements have been selected as ends of distances to
measure: the top of the bell tower, the top of the church’s dome, a corner of the palace and
a corner of the square (Figure 8.39). For the tower to dome distance (d in Figure 8.39)
we obtained respectively for the tracked, untracked and monocular renderings a measure-
ment bias of −0.2, 8.0 and −8.5 and a measurement repeatability of 10.5, 12.3 and 16.0.
The Saint Mark’s tower to church’s dome distance is measured through a slightly skewed
angle and the distribution of the measures for both the tracked and untracked case (Fig-
ures 8.40d and 8.41d) confirms the conclusions postulated with the skewed Rubik’s cube
side measure. Monocular view, however, results in both a negatively biased measure and
larger data dispersion. With respect to the Rubik’s cube test, we believe that the larger
error is due to the lack of a visible straight line, like the cube side, helping the user to
position the ruler.

Saint Mark: tower to palace distance. With this distance (e in Figure 8.39) we ob-
tained respectively for the tracked, untracked and monocular renderings a measurement
bias of −3.4, −4.4 and −22.0 and a measurement repeatability of 7.0, 7.2 and 7.9. This
measure is quite similar to the previous one (Figures 8.40e and 8.41e), albeit the line con-
necting the tower to the palace is a little less oblique, thus allowing for a lower dispersion
and a smaller difference between the measures made with the tracked and the untracked
renderings, confirming what above postulated.

Saint Mark: tower to square corner distance. This final test is different from the
previous two as one end point for the measure, i.e., the square corner, actually lies on the
table surface (f in Figure 8.39). Such point is indeed a physical reference, hence it is not
affected by errors in tracking or stereo vision. The measuring conditions of this test are
close to those of the Rubik’s cube height measure, that was however different, because
in that case no such reference point exists: being the table surface uniformly colored,

Scene F p-value

Rubik: Aligned Measure 53.09 9.5e−14

Rubik: Askew Measure 71.1 2.9e−16

Rubik: Height Measure 17.42 0.0001

Saint Mark: Tower to Dome Distance 7.55 0.0012

Saint Mark: Tower to Palace Distance 32.2 3.9e−10

Saint Mark: Tower to Square Distance 0.09 0.9135

Table 8.2: ANOVA verification of the actual impact of the different viewing conditions
on the measure accuracy.
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Figure 8.42: Effect of scale and rotation over measurement accuracy.

the user physical reference is in fact an area and not a point. Having a well identifiable

reference point simplifies a lot the measuring and reduces the error sources, as shown in

Figures 8.40f and 8.41f: all the viewing condition setups were able to produce almost

unbiased results (note the different scale of the graph). In fact, we obtained respectively

for the tracked, untracked and monocular renderings a measurement bias of 1.3, 0.8 and

0.7. It should be noted, however, that the error dispersion induced when disabling tracking

or stereo vision is higher than the one obtained with both tracking and stereo enabled. In

fact, the latter condition resulted in a measurement repeatability of 1.8, while the former

two respectively of 7.2 and 7.2.

Statistical Validation

With this analysis we are substantiating the statistical significance the influence of differ-

ent functionalities with respect to the measurement accuracy. To this end, we performed a

one-way ANOVA test for each scene and we reported the computed F and the associated

p-value on Table 8.2. Within this test, the p-value represents the probability of the null

hypothesis, that is the probability that the different conditions have no influence on the

ability of the user to perform correct measurements.

Overall the significance of our evaluation and the impact of the different factors stud-

ied are confirmed. Indeed, as can be easily observed, the error distributions under different

viewing conditions can be deemed to be sharply different for all the scenes and tasks, with

the outstanding exception of the last one. However, as can be seen in Figure 8.40, the dis-

tributions related to the Saint Mark’s tower to square corner distance, albeit characterized

by similar averages, are far from being similar. Indeed, this is a clear situation where the

ANOVA test fails to detect the real differences between the measurement processes in-

volved. This is due to the fact that such test is designed to identify differences in averages

and not in data dispersion. In fact, to get best results, the samples gathered should come

from phenomena characterized by similar standard deviations [156], which is a condition

that is not met with this scene.

When taking in account this behavior, we can confirm that, while the ANOVA is a

standard statistical test, the succinct descriptor that it supplies is not always well suited

to capture all the aspects of an empirical evaluation. To get a better insight, the proposed

measurement bias and repeatability appear to be a better choice. Furthermore, also the
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associated PDF can be analyzed as an additional source of useful information.

Effect of Scale and Rotation

Since all the tests have been evaluated using relative errors (expressed as percentages), it
would be interesting to investigate if the performance depends on the size of the measured
feature, i.e., if the measurement error is indeed relative or is just an offset. Furthermore, it
would be interesting to study the effect of the viewing angle over the perception accuracy.
To this end we involved 8 users (6 males and 2 females) aged 22–31 (avg. 27) to measure
a side of the Rubik cube and the distance of the Saint Mark’s tower to the palace with
a more ample range of scales and angles. Figure 8.42 shows the results plotted together
with the standard deviations.

We can observe that scale has a minimal influence with both stereo-based viewing
conditions. Differently, the monoscopic display setup is strongly affected as the relative
error undergoes an almost linear increase with the scale. Also changing the angle of the
measured feature with respect to the user has negligible effect for stereo methods. With
the Rubik scene the effect is also modest for the monoscopic view, while it is strong with
the Saint Mark’s scene. As already observed, this is probably due the lack of a reference
edge to align with. Overall, the biases confirm the variations observed in the former
experiments.

An assessment of the experimental evaluation

This study is a first attempt toward the evaluation of the contribution of tracking and
stereo vision to the accuracy of interaction in mixed reality applications. We feel the
overall methodology to be well suited for the task, however there are still a few issues to
be considered to put the results into the correct perspective.

For starters, the rendering setup and the models adopted for building the virtual scene
were rather basic, thus no advanced visual cues were available to help the user to correctly
perceive depth with stereo vision disabled. Indeed, the role of visual cues is more apparent
if we observe that monocular vision has a less negative impact with the more detailed Saint
Mark’s Square scene. We feel that artificial scenes with simple geometric shapes have a
big role in mixed reality applications because they can be algorithmically manipulated,
an important functionality when dealing with metaphorical objects to interact with the
system and with data visualization scenarios. Still, in the future it would be important
to study the actual impact of stereo and monocular view for different degrees of scene
details and realism.

Some aspects of the experimental procedure could be enhanced: specifically, the un-
avoidable bias introduced by the variability in skills and attitude between users could be
factored out by letting each user taking more measures and by evaluating their perfor-
mance separately. As a good alternative or in addition to separate measurement batches,
a baseline measuring experiment with real objects could be introduced to normalize each
user.
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Finally, it would also be interesting to repeat the test using different tracking and
visualization systems. In fact, even if the bias introduced by the equipment cannot be
avoided, increasing the number of mixed reality setups could yield more robust results.
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9
Conclusions and Future Work

In this thesis we target the problems arising in low-cost Computer Vision based setup used
to enhance the user’s interaction experience by tracking its position and gestures. In the
first part of the thesis we focused on the technical problems introduced by the adoption of
consumer level optical devices. In section 3.1 we proposed a new Fiducial Marker formed
of concentric rigs of circular features. We have seen that its flexibility in the number of
dots and the robust cycle-coding based identification make its adoption ideal in different
situation, from the camera Calibration, where a large number of features is desirable, to
augmented reality applications where the occlusion robustness is a fundamental prerequi-
site. In section 3.2 we presented a method to accurately estimate the parameters of a 3D
ellipse maximizing its reprojection consistency with respect to the gradient of the images
acquired by a camera network. Although we formulated the optimization to optimize the
ellipse parameter, we are working on a formulation to simultaneously optimize both the
parameters of a set of ellipses and the extrinsic parameters of the cameras.

In sections 4.1, 4.2 and 4.3 we adopted the unconstrained camera model introduced by
Bergamasco et al. [33] to handle the imperfections of low-cost image acquisition devices.
In the first section we developed a outlier detection strategy that allows us to calibrate op-
tical devices even when few observations of the calibration target are available. Together
with the interpolation technique introduced in the next chapter it allows to calibrate even
non central cameras (such the LytroTM light field camera) with high accuracy and use
them to triangulate the scene with only one shot.
Despite in section 4.1 we have proven that the unconstrained calibration technique allows
to online calibrate with high accuracy the projector of a stereoscopic structured light scan-
ner, it would be interesting to consider an even simpler setup composed by the projector
and a single camera. This configuration is not easy to calibrate and we are working to
provide a semi-automatic procedure procedure to calibrate it exploiting the unconstrained
camera model for both the camera and the projector.

In the second part we presented two techniques to tackle the problem of finding cor-
respondences between partial shapes under the presence of Non-Rigid quasi-isometric
deformations. This problem can be found, for instance, when processing depth images
obtained by the Kinect R© sensor. In 6.1 we casted the matching problem as a L1 error
minimization over the set of all the partial cycle-consistent multi-way matches over a col-
lection of shapes. The limitation of this technique is mainly due to the inability to exactly
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control the density of the retrieved matches. Conversely, in section 6.2 we search for a
dense matching between a full shape and a partial one using the Functional Map frame-
work. Thanks to a perturbation analysis of the shape Laplacian under the presence of
partiality, we have been able to add some soft constraints to the shape of the optimized
functional map and the method has proven to outperform the state of the art algorithms
of non-rigid dense matching. We are now looking to extend this approach to deal with
partiality in both direction and apply it to deformable object in clutter scenarios.

In the last part we presented some Human Computer Interaction applications exploit-
ing Computer Vision techniques to track user’s pose and gestures. In section 8.1 we
explained the setup of a big Interactive Table build for a museum exhibition and the inter-
action paradigm based on a active cursor thanks to the aggregation of image-based track-
ing and accelerometers data. Within sections 8.2 and 8.3 we introduce a robust tracking
device that we used in two applications, as a pointing device in an interactive whiteboard
and as a head tracking system in a viewer dependent display. The tracking system is com-
posed by two IR pulsating LED tracked by a camera network. Thanks to the changing of
the brightness intensity over the time we are able to retrieve the position and orientation
of multiple devices exploiting only two LEDs. The last section is dedicated to the study
of the human perception of the stereoscopy in viewer dependent displays with particu-
lar regard to the sizes ans spatial relation perception in augmented reality. This study
highlighted very interesting aspects of the human perception which go beyond the simple
projective geometry aspects. With the increasing diffusion of new portable displays it be-
comes more and more important to analyse the impact of a correct user interface design
from the point of view of usability and comfort.
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