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Abstract (English) 

 
The thesis assesses impacts of climate change and variability on regional and global crop yields using 

econometric approaches to analyze global gridded data. Using a large dimension panel data of six Global 

Gridded Crop Models (GGCMs) for four rainfed crops (maize, rice, soybeans and wheat) an emulator 

suitable/amenable of being integrated into Integrated Assessment Models (IAMs) is built. The performance of 

the emulator is evaluated against observational-based, empirical models at regional scale by building a 

statistical model calibrated on historical observed crop yields data for United States (U.S.) counties. Chapter 1 

provides the background of existing research methodologies in agronomic literature. The gaps in existing 

research and scope for research are laid down as motivation and objectives of the research that follows in the 

subsequent chapters. Chapter 2 discusses the data, methodology and framework used in the construction of a 

simple statistical emulator of the response of crops to weather shocks simulated by crop models.  To facilitate 

the integration of the emulator into IAMs, the simplest model using a base specification of linear fixed effect 

with time trend interactions is developed. Chapter 3 investigates modifications to the base specification with a 

series of robustness checks exploring the suitability of an additional predictor variable, the stratification of 

coefficients geographically by groups of Agro-Ecological Zones (AEZs); and most importantly, the role of 

spatial dependence in variables by applying a spatial model. Chapter 4 compares the performance of the 

statistical emulator calibrated on crop model results, with an empirical models of crop responses based on 

historical data. The comparison focuses on U.S. counties. The base specification from Chapter 2 together with 

historical observed data from the U.S. Department of Agriculture (USDA), are utilized in an inter-comparison 

exercise for divergence in results and subsequent implications. Collectively, the three chapters (2-4) address 

several important questions: (1) what do reduced-form statistical response surfaces trained on crop model 

outputs from various simulation specifications look like; (2) do model-based crop response functions vary 

systematically over space (e.g., crop suitability zones) and across crop models?, (3) how do model-based crop 

response functions compare to crop responses estimated  using historical observations? and (4) what are the 

implications for the characterization of future climate risks? Chapter 5 concludes the thesis providing a 

summary of key contributions and suggestions for future work.   

 

 

 

 

 

 

 



II 
 

Abstract (Italian) 

 

 

La tesi valuta gli impatti dei cambiamenti climatici e della variabilità climatica sulla produttività agricola a 

scala regionale e globale analizzando dati ad alta risoluzione spaziale con metodi econometrici. La tesi utilizza 

dati provenienti da sei modelli globali delle rese agricole per quattro coltivazioni non irrigate (mais, riso, soia, 

e grano) per costruire un emulatore da integrare in modelli di valutazione integrata (IAMs). La prestazione 

dell’emulatore statistico è valutata su scala regionale utilizzando modelli empirici basati su osservazioni 

storiche per gli Stati Uniti.  

Il Capitolo 1 fornisce il contesto della ricerca esistente e descrive le metodologie disponibili nell’ambito 

dell’agronomia. Introduce la motivazione e gli obiettivi della ricerca sviluppata nei capitoli successivi. Il 

Capitolo 2 discute i dati, la metodologia usata per sviluppare un semplice emulatore statistico della funzione di 

risposta delle rese agricole a shock meteorologici simulati da modelli di processo. Per facilitare l’integrazione 

dell’emulatore in modelli IAMs, questo capitolo testa un modello semplice ad effetti fissi con l’interazione con 

trend temporali.  Il Capitolo 3 esplora delle varianti del modello base che esplorano 1) altre variabili 

esplicative 2) variazioni geografiche in base a diverse aree agronomiche (Agro-Ecological Zones, AEZs), 3) il 

ruolo della dipendenza spaziale nei dati.  Il Capitolo 4 confronta la performance dell’emulatore statistico 

calibrato sui dati dei modelli di processo con dei modelli empirici basati su dati storici. Il confronto analizza i 

dati per gli Stati Uniti. Si basa sul modello base sviluppato nel Capitolo 2 e dati storici per gli Stati Uniti dal 

Dipartimento dell’Agricoltura (USDA). 

Nel loro insieme i tre capitoli 2-4 affrontano diverse importanti domande: 1) come si caratterizzano le funzioni 

di risposta in forma ridotta stimate a partire da dati generati da modelli di processo 2) come queste variano 

geograficamente e in base al modello che genera i dati 3) come queste differiscono rispetto a funzioni di 

risposta stimate a partire dai dati osservati storicamente e 4) quali sono le implicazioni per l’analisi del rischio 

climatico. Il Capitolo 5 conclude la tesi con un riassunto dei contributi chiave e suggerimenti per lavori futuri. 
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Chapter 1: Introduction 

 
1.1 Background and motivation 

 

There is widespread concern that trends and variability in weather induced by climate change will 

detrimentally affect global agricultural productivity and food supplies (Parry et al 1999, 2004). Reliable 

quantification of the risks of negative impacts at regional and global scales is a critical research need, 

which has so far been met by forcing state-of-the-art global gridded crop models with outputs of Earth 

System Model (ESM) simulations in exercises such as the Inter-Sectoral Impact Model Intercomparison 

Project (ISI-MIP)-Fastrack (Warszawski et al 2013). Together with Integrated Assessment Models 

(IAMs), the predictions for future regional and global food production form the backbone in our 

understanding of the pressures exerted by projected climate change and variability. Over the last few 

decades taking advantage of the exponential rise in computing capacity and data availability, the 

modelling community has made rapid strides in the understanding of discrete scale processes involved in 

crop development (e.g., Elliott et al 2014). Yet, both gaps and scope for research remain which lays the 

framework of my research thesis.   

1.1.1 Key tools used in modelling crop yield responses to climate 

Responses of crop yields to climate are broadly examined using (i) process-based, also referred to as 

‘mechanistic’ models (e.g., Rosenzweig et al 2014, Elliott et al 2014) or (ii) empirical approaches (e.g., 

Lobell and Burke 2010, Schlenker and Roberts 2009, Urban et al 2015). Mechanistic models rely on 

numerical simulation of the key processes associated with crop phenology and require extensive input 

data on management, soil conditions, cultivar amongst others (Rosenzweig et al 2014, Lobell and Burke 

2010). On the contrary, statistical techniques utilize historical data of crop yield and associated 

parameters in conjunction with weather variables, to estimate the underlying relationship between the 

crop growth and climate (Lobell and Burke 2010).  

The strengths and limitations of the two approaches are equally well recognized in literature. The 

strengths of a statistical approach often emphasized are its limited reliance on field calibration data, with 

lower computational requirements compared to process-based approach (Lobell and Burke 2010) . In 

contrast, two of its shortcomings often subject of criticism and skepticism are the inability to encapsulate 

adaptation and assumptions of stationarity,  both are partly true depending on the choice of regression 
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methodology (Lobell et al 2011). Moreover, due to near perfect collinearity of gently increasing carbon 

dioxide ('GH) concentrations with other time trends (such as technology advancements) (Schlenker and 

Roberts 2009, Sue Wing et al 2015), empirical estimates often find it difficult to explicitly account for 

'GH fertilization effects (CFE). 

1.1.2 Framework of recent global crop models inter-comparison exercises 

The potential impacts of climate change and variability on agriculture and the consequent spillover effects 

on global food production and economy have been an active area of research in recent decades (e.g., Parry 

et al 2004, Lobell et al 2011, Challinor and Wheeler 2008, Porter et al 2014, Nelson et al 2014b). A 

number of crop modelling tools such as process based crop models, agro-ecosystem models and statistical 

models have been utilized for furthering our understanding of key processes involved in crop yield 

responses to agro-meteorological element (such as temperature, precipitation, soil conditions). 

In recent years, cumbersome exercises to quantify the impacts of climate change on global crop yields 

were initiated within the frameworks of the Agricultural Model Intercomparsion and Improvement Project 

(AgMIP1—Rosenzweig et al 2013, 2014, Elliott et al 2014) and ISI-MIP (Warszawski et al 2013). Unlike 

earlier studies that focused on the potential impacts of climate change on agriculture at a coarser 

resolution and often at regional scales (such as Parry et al 2004, Challinor and Wheeler 2008, Bassu et al 

2014), ISIMIP-Fastrack (ISIMIP-FT) is the first to attempt the same at a global-gridded scale, 

encompassing different Global Gridded Crop Models (GGCMs), crops and scenarios, with a systematic 

harmonization of simulation protocol (Rosenzweig et al 2014). Bringing together a combination of 

different ESMs and GGCMs, ISI-MIP makes a concrete effort in quantifying the uncertainties of climate 

change impacts on global crop yields. 

Notwithstanding the vast array of ESMs-GGCMs combinations used in the ISIMIP-FT, the lack of a pure 

statistical crop model2 participating in the simulation exercise is the primary motivating factor for this 

research. As highlighted in Lobell and Burke 2010, Oyebamiji et al 2015 and Blanc and Sultan 2015, a 

tool capable of replicating yields for a variety of important crops, from a wide ensemble of heterogeneous 

crop models, under different climate change scenarios and in particular, at a global-gridded scale, is 

                                                   
1 AgMIP is the umbrella project that coordinated and provided simulation data of crop models to the agriculture 
sector of ISI-MIP. A quick overview can be found here https://www.agmip.org/ag-grid/ggcmi/ and https://www.pik-
potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/about 

2 Although there is a hybrid GGCM (PEGASUS) participating in ISIMIP-FT; only one other recent study 'Blanc and 
Sultan (2015)’ implements a statistical emulator using ISIMIP-FT data. However, they focus only on crop maize and 
as shown in my research, the methodology and comprehensive set of robustness checks employed here enables the 
emulator to be applied across broad range of climate impacts assessment. 
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highly essential. The multi-crop emulator developed as part of this study would contribute to this need 

identified by the research community, as well as to a set of broader objectives outlined below. 

1.2 Objectives and research questions 

I begin by reviewing the existing state of knowledge and empirical methodology used in assessments of 

climate change impacts on agriculture. I focus on econometric methods commonly employed to assess 

response of crop yields to climate change, the uncertainties associated with estimation methods and gaps 

in existing empirical literature. As vital contribution to empirical agronomic work, I develop an emulator 

capable of capturing the impacts of weather shocks on crop yields via statistically-estimated, reduced-

form response surfaces of GGCMs. Though simple, the IAM community needs such a parsimonious 

emulator that could be easily combined with multiple realizations of future climate to develop an analysis 

of future climate risk on crops. The development of the emulator broadly sets the outline for not only 

developing new research methodologies, but also for expanding existing impact assessment approaches. 

The doctoral research is organized around the following research questions: 

 

1. What does the most basic emulator of the heat and moisture effects of climate change look like, 

controlling completely for the confounding effects of 'GH by basing it on no-CFE GGCMs’ runs?   

2. Can the emulator replicate GGCMs’ yield responses to future climate for multiple crops, considering 

the heterogeneity across the GGCMs, crops and simulation setups?  

3. At what spatial and temporal scales does the emulator show strength and weakness and whether 

crops’ response to climate vary geographically?  

4. How do the coefficient estimates from an empirical model trained on historical observed crop yields 

compare with an identical specification of the emulator? 

5. What are the underlying meta-parameters that contributed most to the divergence in GGCMs’ yield 

responses? 

 
To address these questions, I utilize data from two different sources. Since agriculture is largely 

influenced by regional climate, soil conditions and management practices; the study uses global gridded 

data at fine scale resolution from ISIMIP-FT. In addition, historical observed data covering U.S. counties 

from the U.S. Department of Agriculture (USDA) are also used for my research. 
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1.3 Outline of Doctoral thesis 

This thesis is organized as three core chapters (excluding this introductory chapter), and an additional 

final chapter summarizing the key contributions of the research and proposing scope for future work. 

Each chapter examines a different methodology (econometric specification) as part of stability and 

robustness tests.   

My first core chapter (Chapter 2) discusses the framework and methodology involved in the building of a 

robust statistical emulator for crop yield responses to climate change. Utilizing crop yields for major 

rainfed crops (maize, rice, soybeans and wheat) and climate data from ISIMIP-FT, I develop a simple and 

flexible emulator that can be rapidly integrated with IAMs. The reduced-form response functions to 

temperature (/) and precipitation (3) are characterized and assessed for their stationarity across time and 

different models—predictive power, and potential diagnostic utility. Here the emulator is built 

independently as six GGCMs and in addition, as a multi-GCCM calibrated on a large merged panel of six 

GGCMs. This offers flexibility in application as both ensemble of individual emulators and/or a multi-

GGCM emulator The parsimony is at the core of design implementation. Yet, its holds considerable 

potential as a diagnostic methodology to elucidate uncertainties in the processes simulated by GGCMs, 

and to support the development of climate impact inter-comparison exercises within the IAM community. 

This chapter is currently being finalized for submission to Environment Research Letters (ERL) and is co-

authored by Enrica De Cian and Ian Sue Wing. 

Chapter 3 addresses the broad range of robustness tests on the emulator built in chapter 2. Apart from 

testing the suitability of an additional predictor variable -Vapor Pressure Deficit (C3D)-, two other 

regression specifications are examined for their performance and practical application in comparison to 

the simple base specification used in chapter 2. To examine heterogeneity of crop yield response across 

geographic regions, I group the eighteen AEZs (Lee et al 2005) which are a combination of a climate 

region and growing period length, into six broader zones. The covariates are then allowed to interact with 

the six AEZs giving coefficient estimates stratified by each AEZ. The second regression specification 

takes advantage of recent developments in spatial panel econometrics (SPE). I utilize a Spatial Lag of X 

(SLX) model that accounts for dependence in the predictor variables. This chapter is under preparation for 

submission to Journal of Agriculture and Forest Meteorology, and is co-authored by Enrica De Cian and 

Ian Sue Wing. 

Chapter 4 shifts from global to regional perspective, focusing on U.S. counties. For this, I extract U.S. 

county data from my GGCMs’ panel data to match the spatial scales of the historical observed data from 

USDA. I then evaluate how well GGCMs’ internal representations of crop growth compare with the 
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responses of yields to heat and moisture to weather variation under the current climate estimated by 

econometric model trained on observations. I provide first glimpse into the origins and implications of the 

divergence in yield impacts, both among GGCMs, and between GGCMs and historical observations. 

Furthermore, I assess the implications of the differences between GGCMs’ aggregated responses under 

future climate change scenario. This chapter is submitted to the special issue of ERL (‘An Inter-method 

Comparison of Climate Change Impacts on Agriculture’), and is co-authored by self, Enrica De Cian and 

Ian Sue Wing. 

To conclude, Chapter 5 provides a summary of the contributions made by the thesis, discusses the 

caveats, and offers suggestions for future work. 
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Chapter 2: Robust Statistical Emulation of Process Model Crop Yield   

Responses to Climate Change 

Preface 

Attention given to the impacts of climate change on agriculture at both regional and global scales has 

gathered momentum in recent years. With the projected rise in world population, mitigating the effects of 

climate change on agriculture and identifying the pressures on adaptation to future crop productivity 

require wide-ranging modelling tools. Historically, majority of the work assessing impacts of climate 

change on agriculture have focused on coarser resolutions (districts, counties and usually countries). 

However, recent advancements in computing capacities have led interest shifting to fine scale resolutions, 

typically at global gridded resolution. 

This chapter discusses the design, calibration and implementation of a statistical emulator, at a global 

gridded fine scale resolution. An Emulator is a Surrogate Model (Fast Statistical Approximation or a 

Cheap Computational Model) that can be rapidly coupled with the output of ESMs.  

The proceedings of this chapter are being prepared for submission to Environment Research Letters 

(ERL), and are co-authored by Enrica De Cian and Ian Sue Wing. Baring few minor superficial changes 

to the figures and text, the manuscript is largely unchanged from the version of the paper under 

preparation. I designed and performed research, analyzed the data and wrote the paper. Enrica De Cian 

and Ian Sue Wing provided scientific input. All co-authors are involved in the revision of the final text for 

submission to ERL. 

Main Text 

Abstract 

A rapidly growing literature employs historical observations or pseudo-data generated by Global Gridded Crop 

Models (GGCMs) to empirically estimate reduced-form crop yield responses to meteorology. The resulting fitted 

response surfaces, when forced by Earth System Model (ESM) simulations of future climate, function as 

computationally tractable statistical emulators of climatic shocks to crop productivity that can be coupled with 

Integrated Assessment Models (IAMs) to evaluate the broader energy and economic implications of the agricultural 

climate change impacts. We document the development of a statistical emulator of the yields of four major cereal 

crops (maize, rice, wheat, and soybeans), over 1972-2099 under two climate change scenarios (Representative 

Concentration Pathways 4.5 and 8.5). We access the suitability of panel fixed effects techniques, using the data from 

Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)-Fastrack: a combination of six GGCMs and one 
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ESM, under rainfed cultivation regimes not accounting for carbon dioxide ('GH) fertilization effects (CFE). We 

characterize the reduced-form response functions to temperature and precipitation, and assess their stationarity 

across time and different models—predictive power, and potential diagnostic utility. Using a simple trend 

interaction specification, we demonstrate how adaptation plays a contrasting role across GGCMs in reducing the 

potential negative percentage yield shocks on crops in future. A key contribution our work is the ability to capture 

and control for the potential confounding impacts of adaptation that inadvertently lead to double counting of shocks 

in IAMs. Our results show that the statistical emulator has considerable agreement in estimating relative changes in 

crop yields in future vis-à-vis the underlying GGCMs on which it is calibrated. The degree of agreement measured 

by way of suitable statistical indices, varies across GGCMs and mean future periods. The potential reasons of the 

disparity and possible techniques to account for them are highlighted. Built as six independent emulators that can be 

applied as an ensemble, as well as a multi-GGCM emulator calibrated on a large merged panel of six GGCMs; we 

demonstrate that our simple and flexible statistical emulator holds considerable potential as a diagnostic 

methodology to elucidate uncertainties in the processes simulated by GGCMs, and to support the development of 

climate impact inter-comparison exercises within the integrated assessment modelling community.  

2.1 Introduction 

Concern abounds that shifting weather patterns driven by climate change will detrimentally affect global 

agricultural productivity and food supplies (Portmann et al 2010). Understanding the potential threat 

necessitates reliable quantification of the risks of negative impacts on crop yields at broad geographic 

scales. Thus far, such assessments have involved forcing Global Gridded Crop Models (GGCMs) with 

outputs of Earth System Model (ESM) simulations in the context of the Agricultural Model 

Intercomparsion and Improvement Project (AgMIP—Rosenzweig et al 2013, 2014, Elliott et al 2014) and 

ISI-MIP (Warszawski et al 2013, Frieler et al 2015). GGCMs’ key advantage is their ability to be 

calibrated on relatively few observations and then simulated over large geographic areas, generating 

realizations of crop yields with comprehensive spatial and temporal coverage at fine resolution. Even so, 

it is challenging to make direct use of these results to assess risks to agriculture because of their 

dimensionality—projections vary across discrete combinations of specific warming scenarios, ESMs, and 

crop models. Flexibly incorporating agricultural impacts into IAMs requires an encompassing envelope of 

model-and/or scenario-averaged responses to meteorology that is capable of faithfully reproducing 

GGCMs’ simulated shocks to crop yields over a wide range of future climatic conditions. 

The latter (scenario-averaged) more general responses are the key output of empirical climate economics 

studies, which capture the impacts of weather shocks on crop yields via statistically-estimated, reduced-

form response surfaces made up of the marginal effects of time exposure to a vector of intervals of 

different meteorological variables (e.g. see Schlenker and Roberts 2009, Schlenker and Lobell 2010). 
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Response surfaces play the role of an emulator. Letting 7 and " index locations and time periods, they 

relate observed crop yields, *, to a vector of meteorological covariates, I, via a multi-dimensional 

envelope, J(⋅), which incorporates response parameters, L: *M,N = J(IM,N , L). In the empirical economic 

literature, J is commonly specified as a variant of the linear cross-section time-series econometric model 

 6M,N = IM,NL + PM + QN + RM,N      (2.1) 

where 6 is the logarithm of historically observed yields, the vector I = {/T, … , /V, 3T, … , 3W} records the 

length of time over the growing season that each location historical spent in Y intervals of temperature (/) 

and Z intervals of precipitation (3), P is a fixed effect capturing the influence of time-invariant 

unobserved idiosyncratic factors at each location, Q is a time effect capturing the influence of common 

time-varying shocks, and R is a random disturbance term. The elements of L are semi-elasticities that 

represent the temporally and spatially averaged yield impacts of each category of exposure. The limitation 

of equation (2.1) is its limited geographic scope—typically the locations 7 are sub-national administrative 

units within a single country. 

Here we document the construction of a crop yield emulator that satisfies the competing mandates of 

GGCMs’ global coverage and econometric models’ parsimonious representation of the weather 

responsiveness of yields. The first question we ask is, what is I, the set of meteorological variables that 

adequately and parsimoniously captures the envelope of GGCMs’ response. Second, we ask what is J(⋅), 

in terms of the shape of the reduced-form response surface that best captures the relationship between I 

and 6, and its stationarity across GGCMs with different characteristics, and over time. Finally, we 

investigate the ability of the resulting best-fit model to reproduce the percentage changes in yields 

generated by GGCMs under future warming scenarios relative to a reference base period. 

We are not the first to ask these questions. Our approach seeks to both encompass and extend recent 

efforts by Oyebamiji et al (2015), who emulate multiple crops’ responses utilizing data for a single 

GGCM (LPJmL), and Blanc and Sultan (2015), who emulate only the responses for maize3 using multiple 

GGCMs, albeit independently. Typically, the outputs of model inter-comparison exercises record only a 

subset of the endogenously-varying internal processes of their constituent models.  Whereas Oyebamiji et 

                                                   
3 Blanc (2016) expands the earlier work of Blanc and Sultan (2015) to multiple crops as done in this chapter. 
However, at the time of preparing this paper for submission to ERL, Blanc (2016) is unpublished in peer-reviewed 
journal. Nevertheless, the methodology and objectives addressed in this chapter have differences with both Blanc 
and Sultan (2015) and Blanc (2016).  
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al 2015 account for potential changes in management practices4, Blanc and Sultan 2015 do not control for 

the potential confounding impacts of adaptation that inadvertently lead to double counting of shocks in 

IAMs. 

We focus on predicting the impacts on future rainfed crop yields as a response to climate change gross 

and net of any potential form of adaptation for four major crops (maize, rice, soybeans and wheat). Using 

an analytical framework that is simple, flexible and robust; we focus on two contrasting Representative 

Concentration Pathway scenarios (RCP), RCP 4.5. and RCP 8.5 (Moss et al 2010). In order to focus on 

the key underlying mechanisms that play the most important role in crop growth process, namely heat 

stress and moisture interactions; our study focuses on GGCMs’ crop yields not accounting for  'GH 

Fertilization Effect (CFE).  

We find that our simple specification using daily intervals of / and 3 defined within the crop growing 

season, along with their individual interactions with time trend; is able to emulate the climate responses of 

the GGCMs. We show the robustness of our specification by way of both in-sample and out-of-sample 

validations. Further, to illustrate the contribution of adaptation to moderating yield shocks over the two 

epochs (2030~2064 and 2065~2099, RCP 8.5), we demonstrate the different responses to changes in 

future crop yields, using a trend-interaction specification. The latter findings are crucial to agronomic 

studies since the inability to correctly account for adaptation in future yield responses are often 

considered short-comings of statistical methods (Lobell et al 2011).   

The rest of the chapter is organized as follows. Section 2.2 describes our econometric methodology for 

modelling climate-yield relationships. Section 2.3 presents the resulting relative changes in crop yields in 

future, and a comparison with the GGCMs. We summarize our findings with a discussion of the caveats 

and scope for work in future in Section 2.4. 

2.2 Methods 

The starting point for our analysis is the “perfect model approach (PMA)” developed by Lobell and Burke 

(2010) and used by  Holzkämper et al (2012) and Blanc and Sultan (2015). Yields under different climate 

forcings are simulated by GGCMs, statistical models of the underlying relationship between climate and 

yields are developed and estimated, and the ability of the resulting emulators to reproduce GGCM yields 

are tested (figure 2.1). Importantly, at the broad geographic scale of GGCM grid cells, true yield 

                                                   
4 To achieve this goal, the study utilizes a series of control runs of GGCM LPJmL (setup under different initial 
conditions) and builds an emulator based on a complex calibration process requiring a large number/forms of 
predictor variables.  
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responses across much of the world are not known. Thus testing the ability of our emulator to recreate the 

behaviour of the model is the only practical way to assess our ability to emulate the underlying yield 

response in nature. 

 

Figure 2.1. Methodological approach used in this study. The 6 x ISIMIP-FT GGCMs are used independently as well 
as a combined multi-GGCM panel.  For an out-of-sample validation, data for 1972~2089 was used for calibration 
and then emulator projections in 2090~2099 were compared with GGCMs’ outputs.  

2.2.1 Data  

Our data taken from the ISIMIP-FT exercise, uses six GGCMs5 to simulate yields of maize, rice, 

soybeans and wheat on a 0.5° grid6 for historical and future years (1972-2004 and 2005-2099, 

respectively), assuming cultivation of crops in all grid cells under rainfed conditions, not accounting for 

CFE7. All GGCM runs are forced with bias-corrected climate inputs (Hempel et al 2013) from 

HadGEM2-ES (Jones et al 2011), but the individual GGCMs differ substantially in their 

parameterizations, calibration, input variables, management practices and representations of farmer 

                                                   
5 The six GGCMs utilized in this study are GEPIC (Liu et al 2007), GAEZ-IMAGE (van Vuuren et al 2006), LPJ-
GUESS (Sitch et al 2003), LPJmL (BONDEAU et al 2007, Sitch et al 2003), pDSSAT (Elliott et al 2013, Jones et 

al 2003)  and PEGASUS (Deryng et al 2011). Details of the modelling groups involved are provided in Section 1 of 
Appendix A.  

6 Approx 55 [<H at the equator. 

7 This is a sensitivity run, where 'G2  concentrations for the future period (2005-2100) were held constant on present 
day levels.  
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adaptation (see table 2A in Appendix A, and Rosenzweig et al 2014 SI for futher details). All GGCMs 

simulated yields in historical simulation period (1972-2004) keeping management practices constant to 

year 2000.  

To estimate statistical yield response, we use gridded annual yields (tons/hectare, "/ℎ@) over the entire 

historical and future period (1972-2099)8. We mask grid cells using global rainfed cultivated areas for 

each crop from the monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset 

(Portmann et al 2010), before identifying and dropping cells with anomalously high or low crop yield 

values (Section 2 of Appendix A). The result is a balanced 128-year panel for each GGCM x crop 

combination9, each of which has its own spatial coverage and distinct number of observations.  

With regard to weather forcings in the ISIMIP-FT exercise, growing seasons vary across crops and 

GGCMs, as well as over the historical and future periods of their simulations. For example, the crop 

planting dates in GGCMs LPJ-GUESS and LPJmL vary according to annual weather conditions, thus 

leading to potential endogeneity of growing season exposures. To keep the analyses tractable, we 

subsume this heterogeneity and adopt a common, fixed, four-month growing season differentiated by 

latitude: for the northern hemisphere, the months May-August (]YY^) of the year of each observation of 

yields, and for the southern hemisphere, November-December of the year preceding each observation as 

well as January-February of the observation’s year (_DYJ). 

We matched HadGEM2-ES climate forcings to GGCM generated realizations of yield for each year of the 

future period two RCPs (4.5 and 8.5), using the methods described above. For consistency, we used the 

identical crop-specific spatial filters and growing season truncations across the different crops and 

models. Statistical models that we train on climate and yields over the calibration period can then be 

linked with climate data for the prediction period10 to generate synthetic yield projections capable of 

being compared with GGCM outputs.  

                                                   
8 As separate robustness checks, we also estimate the statistical yield response models on the historical period 
(1972-2004). However, across most GGCMs we find that the marginal response of log yield to extreme heat is 
larger over the historical period than in the future; there by suggesting an acceleration of endogenous adaptation 
post-historical period. This makes it difficult to accurately estimate the trends from the historical period and then 
apply them to make unbiased projections for future periods. 

9 Some exceptions (e.g., PEGASUS does not simulate rice, GAEZ-IMAGE has different number of years etc.) are 
discussed in Section 2 of Appendix A. 

10 The two periods (2030-2064 and 2065-2099 in RCPs 4.5 and 8.5) used for validating our future predictions with 
GGCMs’ are within the sample of our calibration space, thus amounting to in-sample validation. For an out-of-
sample validation, we re-calibrate the model on 1972-2089 and then compare our predictions in 2090-2099. 
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2.2.2 Variable selection and empirical specification 

Drawing on the empirical climate economics literature (such as Lobell and Burke 2010, Schlenker and 

Roberts 2009, Deschênes and Greenstone 2012), our empirical analysis framework relies on panel-data 

fixed effect models. For our covariates we employ intervals (“bins”) of / and 3, as well as the interaction 

of the bins with a linear time trend. The bins {/T, … , /V , 3T, … , 3W} are counts of number of days over the 

growing season at each grid-cell spent in Y intervals11 of /(D85(88 '84`7F%, °') and Z intervals of 

3(<7447<7"8( >8( 9@6, <</9), where: 

Y = {< 5, 5~7.5, 7.5~10, 10~12.5, 12.5~15, 15~17.5, 17.5~20, 20~22.5, 22.5~25, 25~27.5, 27.5~30, > 30}  and 

Z = { < 3, 3~4, 4~5, 5~10, 10~15, 15~20, > 20}   
The bins Y = 15~17.5°' and  Z = 5~10<</9 are omitted in regressions as reference category. Thus 

with reference to equation (2.1), each coefficient of / (3) indicates the impact on 4#5 67849 of an 

additional day in the Y"ℎ (Z"ℎ) interval, relative to a day in the dropped / (3) bin. The rationale behind 

the binning approach is discussed in Section 5 of Appendix A.  

We analyze each of our six GGCMs multi-crop dataset of weather and yields using a traditional panel 

data econometric approach (equation 2.2, referring to it as our ‘base specification’): 

6M,N = IM,NL + (IM,N ∗ QN)a + PM + RM,N                                                                                       (2.2) 

where Q is now a linear time trend, 7 are the spatial units (grid-cells) and " the time dimension (year). The 

elements of a capture the additional effect of changing factors12 (within the GGCMs) on the marginal 

response to / and 3. The remaining terms are the same as in equation (2.1). However, as discussed later 

(Section 2.3.1), our stability tests indicate that for three of the GGCMs (GAEZ-IMAGE, pDSSAT and 

PEGASUS), the interaction term in equation (2.2) gives us implausible results. We therefore omit the 

interaction term for this set of GGCMs, and rewrite our equation (2.2) as equation (2.3), referring to it as 

‘base specification without interaction’ 

6M,N = IM,NL + PM + RM,N                                                                                                               (2.3) 

                                                   
11 For each / and 3 bin (except the extreme lower and upper bins), the lower range is included in the count (e.g. in 
temperature bin 7.5~10, / ≥ 7.5 is included in the count). The extreme / and 3 bins are open-ended. 

12 These factors can be considered as the moderating effects on the response to extreme heat that need to be correctly 
accounted for. 
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Further, since no GGCM is considered ‘perfect’ or ranked in their performance (Rosenzweig et al 2014), 

we take our PMA a step further by calibrating our model on a combined multi-GGCM panel of all six 

GGCMs. The equation (2.2) would now include an additional dimension representing model-specific 

fixed effects, cd (mth GGCM) and can be now written as:  

6M,N = IM,NL + e ∗ (IM,N ∗ QN)a + PM ∗ cd+  RM,N                                                                         (2.4) 

where e is a dummy variable; e = � for GAEZ-IMAGE, pDSSAT and PEGASUS, and e = � otherwise 

By incorporating a multi-GGCM panel as in equation (2.4) our study is the first to attempt construction of 

a comprehensive emulator that encompass the heterogeneous behaviour across GGCMs13. It should be 

mentioned here that by applying both approaches (equations 2.2 or its variant equation 2.3; and 2.4), we 

offer added flexibility in the application of emulators, either as an ensemble of six GGCMs or as a single 

multi-GGCM.  

We run our regression specifications in f package g7$8@( J7?89 hii8`"% (gJh) (Gaure 2013), which 

can handle arbitrary number of factors14 and is tailored for fixed effect estimation on large panel data. To 

account for heteroscedasticity and autocorrelation in the error term (RM,N), we use robust standard errors 

(S.E.)15 clustered by grid-cells.  

2.2.3 Climate scenarios used in future projections 

The RCPs are atmospheric greenhouse gas (GHG) concentration  trajectories representing different level 

of radiative forcing (Moss et al 2010). While the RCP 8.5 scenario encompasses the highest level of 

global warming compared to historical conditions and projects the highest level of GHG concentration by 

year 2100, RCP 4.5 is representative of an intermediate scenario with relatively lower GHG concentration 

and changes in temperature by the end of the twenty-first century. The differing climate variability in the 

combination of two future periods and RCP scenarios (figure 5A of Appendix A) enables us to undertake 

a more robust validation.  It must be noted though that considering the crop yield data used in our study 

maintains the 'G2 concentrations for the future period (2005-2100) constant to present day levels, the 

                                                   
13 Although Blanc and Sultan (2015) and Blanc (2016) include climate variables from multiple ESMs and utilize 
five GGCMs, the studies do not attempt a combined multi-GGCM. 

14 The factors in equations (2.2) and (2.3) correspond to PM and  cd, (i.e. grid-cell ID and GGCM), with 7 and < as 
the levels. In econometric jargon, factors are invariably referred to as dummy variables.  

15 The S.E.s are adjusted for the reduced degrees of freedom (DOF) coming from the dummies which are implicitly 
present. They are also small-sample corrected 
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relative difference in the GHG concentration for the two RCPs would be less relevant compared to the 

changes in the variability and mean state of the climate. 

2.2.4 Emulator projections and diagnostic comparisons with GGCM outputs 

To assess our emulator projections with GGCMs, we use relative bias (RB) as shown in equation (2.5) 

computed at each 7Nj grid-cell. Positive (negative) values of RB indicate that the emulated changes in 

yields at that grid-cell exceeds (understates) the corresponding GGCM projections.  

fkM  =  [% 'ℎ@$58 6Mmdn/ % 'ℎ@$58 6Moopq] –  1                         (2.5) 

Our performance comparison of the emulator proceeds in two stages. First, we undertake an in-sample 

test, estimating equations (2.2-2.4) over 1972-2099. We apply the resulting estimated coefficients to 

transformed weather variables to emulate % changes in yields over two periods (2030-2064 and 2065-

2099) and compare our results with the corresponding GGCM’s % changes in yields. For an out-of-

sample validation, we use a subset of the full panel (i.e. 1972-2089) for re-estimating the equations (2.2-

2.4), and then compare our % changes in yields for the left out period (2090-2099) with the 

corresponding GGCM’s % changes in yields. The performance comparison is undertaken for both RCP 

scenarios. 

It is worth re-iterating the six GGCMs differ in model types, processes, fertility inputs, and calibration 

procedures (see table 2A in Appendix A). The use of relative yield changes rather than absolute yield 

values is thus an important measure of the suitability of our emulator estimates.  

2.3 Results 

2.3.1 Regression analyses (1972-2099 RCP 8.5) 

We begin by assessing the ability of the emulators to mimic the nonlinear response of crop yields to heat 

uncovered by empirical studies (Schlenker and Roberts 2009, Lobell et al 2011). For the sake of clarity, it 

is worth reminding that the set of GGCMs (GAEZ-IMAGE, pDSSAT and PEGASUS), the regression 

specification is based on equation (2.3). The other GGCMs (GEPIC, LPJ-GUESS and LPJmL) 

incorporated interaction term and the specification took the form of equation (2.2).  

Figure 2.2A shows the estimated coefficients of / and 3 bins for maize with robust S.E.s (see figure 1A 

of Appendix A for corresponding plots of other crops). Since the dependent variable is 4#5 67849, the 

vertical difference (y-axis) implies a percentage change in yields ("/ℎ@) for each additional day in a 

particular bin, relative to the bin dropped in regression and holding all other bins constant. For example, 



15 
 

consider two points on / coefficients (panel ‘A’) for GEPIC (orange). Moving from a day with daily 

average / between 15~17.5°' to a day at > 30°' would result in a predicted marginal yield decline 

of 3%, holding all other bins at the same level.  

A. Nonlinear relationship between (a) / and log 67849 (b) 3 and log 67849 

  

                                                           (a)                                                                                                          (b) 

B. Nonlinear relationship between (a) ‘/’ interaction terms and log 67849 (b) ‘3’ interaction terms and log 67849 

  
                                                 (a)                                                                                                             (b) 

GEPIC     GAEZ-IMAGE     LPJ-GUESS     LPJmL     pDSSAT    PEGASUS   Multi-GGCM 

Figure 2.2. Response of Maize ��� ����� to (a) 	 and (b) 
 bins. Coefficient estimates are for (A) main 	 and 
 
(B) interaction of 	 and 
 bins with time trend (GEPIC, LPJ-GUESS, LPJmL and Multi-GGCM). S.E.s are robust 
to heteroscedasticity and autocorrelation. Graphs display changes in yield (%) for exposure to an additional day 
within a particular 	(
) bin interval, relative to bins 	 = ��~��. � ° � (
 = �~�� ��/�). The ��% confidence 
band (CI) is adjusted for spatial correlation. The horizontal black line corresponds to � − ���� = � reference. CI 
intersecting the horizontal � reference line would imply that the corresponding coefficient is insignificant  (�. �.  � >  �. ��) 
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As seen in figure 2.2A, across all GGCMs, the response of yields to 3 over a wide range are remarkably 

muted in comparison to the corresponding responses to /. Moreover, the responses of different GGCMs 

exhibit considerable heterogeneity16 for /, with an additional day over 30°'  causing yields to decline 

between 0.4 − 3% from their peak at the optimum /. Most GGCMs exhibit similar characteristic shape, 

with the mid-range temperatures ideal for maize growth process and lower/higher thresholds having 

detrimental impact on yields, in line with earlier works (see Schlenker and Roberts 2009, Lobell et al 

2012, Blanc and Sultan 2015). There are a few exceptions though with LPJmL (cyan) having largely 

insignificant coefficients (> > 0.05) for lower / bins, and GAEZ-IMAGE (dark green) having an overall 

muted response. However, the multi-GGCM response of yields to / (in black) embraces the broad pattern 

of all six GGCMs remarkably well.  

As noted by Schlenker and Roberts 2009, we also observe that the response of crop yields is robust to 

modification in specifications. A similar pattern of nonlinear effects of / remains even if the 

homogeneous time variant factors (e.g. technology change) are controlled for by using year-fixed effects 

rather than interaction of / and 3 with time trends (results available upon request).  

Focusing attention on figure 2.2B which shows the response of maize yields to the coefficient estimates 

of interaction terms (a) for the three GGCMs (GEPIC, LPJ-GUESS, LPJmL), the base response to T is 

altered to varying degrees by trends in the marginal response of extreme heat reflecting the impact of 

adaptation. For these GGCMs, the trends offset yield declines, suggesting that their internal processes 

facilitate adaptation, reducing losses by 1~3 % for >  30°' days17.  

For GGCMs pDSSAT and PEGASUS that do not incorporate the interaction term in the regression 

specification, our stability tests indicate that the introduction of the same generates implausible positive 

base responses to extreme heat (figure 2A in Appendix A). GAEZ-IMAGE with its overall muted 

response to / and 3 has negligible difference in implementation of either specification (equations 2.2 or 

2.3). These findings therefore vindicate omitting the interaction term from the regression specifications of 

GAEZ-IMAGE, pDSSAT and PEGASUS.  

                                                   
16 The varying responses of GGCM yields to / can be largely attributed to the characteristics of GGCMs’ sensitivity 
to temperature changes and acute heat stress (Rosenzweig et al 2014 SI). The divergence in GGCMs’ yield 
responses are investigated further in Chapter 4. 

17 Comparison of / bin coefficients in figure 2.2A with the corresponding / bin coefficients in figure 2.2B. The 
difference in vertical scale between the two values would imply a shift in response of % yield. 
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2.3.2 Assessing emulator goodness of fit 

Bearing in mind the low base yields across a sizeable number of grid-cells in majority of the GGCMs, our 

RB results are likely to be influenced by outliers18. We begin by assessing the bias in our emulators as 

distribution of RB weighted by grid-cell mean annual production19 in tons ("), for all crops, in periods 

2030~2064 and 2065~2099 under both RCP 4.5 and 8.5 scenarios (figure 2.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   
18 Since we are making a relative comparison of two ‘percentage changes in future yields’, the low base yields ("/ℎ@) in either or both GGCMs and emulators historical period can result in large RB across such grid-cells. 
Therefore, to enable a systematic assessment of the RB, we need to weigh the RB by the corresponding grid-cell 
mean annual production (").  

19 Since the harvested area (ℎ8`"@(8%, ℎ@) varies by grid-cells in the GGCM simulations, the RB is weighted by 
production (") and not by yields ("/ℎ@) 
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A. Maize 
 

(a)                                                      (b)                                                      (c) 

                  RCP 4.5                  RCP 8.5                   RCP 4.5                  RCP 8.5                     RCP 4.5                  RCP 8.5 

 

B. Rice 

 

 
C. Soybeans  

 

 
 
 

D. Wheat  

 

GEPIC     GAEZ-IMAGE     LPJ-GUESS     LPJmL     pDSSAT    PEGASUS   Multi-GGCM 

Figure 2.3. Distribution of RB (%) weighted by grid-cell mean annual production (!) for all four crops (a) 2030-
2064 (In-sample validation) (b) 2065-2099 (In-sample validation) (c) 2090-2099 (Out-of-sample validation) 
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As evident from the above distributions, the RB for each crop-emulator (including the multi-GGCM) is 

low (within +/-5) across grid-cells with major share of present day global crop production. To facilitate 

easier interpretation on the share of bias, table 2.1 shows the % of maize global production across grid-

cells under different intervals of RB, for all three periods under the two RCP scenarios. For instance, 

emulator LPJmL over-predicts (fk >  5) yields for approx. one-tenth of total global maize production 

over the period 2030~2064 RCP 8.5, but the RB is low (<  −5 ~  >  5) for the major share of global 

production.  
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Table 2.1. Share of maize production (%) with the corresponding RB intervals, for periods 2030~2064, 2065~2099 
shown in parentheses, and 2090~2099a shown in square braces, in (A) RCP 4.5 and (B) RCP 8.5 scenarios.   

(A) RCP 4.5 
RB 

 
GEPIC 

(%) 
GAEZ-IMAGEb 

(%) 
LPJ-GUESS 

(%) 
LPJmL 

(%) 
pDSSAT 

(%) 
PEGASUS 

(%) 
Multi-GGCM 

(%) 

> 10 
1.33 

(0.75) 
[3.84] 

- 
1.49 

(1.96) 
[3.53] 

1.54 
(2.37) 
[3.92] 

0.03 
(0.00) 
[0.16] 

3.48 
(1.91) 
[1.31] 

0.69 
(1.38) 
[2.44] 

5 ~ 10 
1.33 

(0.74) 
[4.15] 

- 
1.30 

(2.17) 
[4.64] 

1.85 
(2.87) 
[3.75] 

0.24 
(0.06) 
[0.11] 

3.65 
(1.57) 
[1.59] 

1.01 
(1.53) 
[3.17] 

0 ~ 5 
24.85 

(27.66) 
[47.66] 

- 
77.44 

(84.51) 
[83.27] 

63.64 
(50.87) 
[63.77] 

76.78 
(69.18) 
[75.37] 

57.60 
(30.27) 
[34.34] 

54.12 
(40.70) 
[58.08] 

0 ~ -5 
62.00 

(60.91) 
[36.34] 

- 
19.56 

(11.32) 
[8.58] 

29.51 
(39.47) 
[24.72] 

20.96 
(28.79) 
[22.56] 

27.60 
(53.89) 
[43.32] 

39.15 
(51.86) 
[31.47] 

-5 ~ -10  
6.00 

(5.46) 
[4.19] 

- 
0.10 

(0.04) 
[0.00] 

1.76 
(2.42) 
[1.95] 

1.02 
(1.13) 
[1.08] 

3.58 
(6.32) 
[8.68] 

2.53 
(2.44) 
[2.62] 

< -10 

4.50 
(4.48) 
[3.83] 

- 
0.12 

(0.00) 
[0.00] 

1.70 
(2.01) 
[1.89] 

0.98 
(0.84) 
[0.74] 

4.09 
(6.04) 

[10.65] 

2.50 
(2.10) 
[2.22] 

(B) RCP 8.5 

RB 
GEPIC 

(%) 
GAEZ-IMAGE 

(%) 
LPJ-GUESS 

(%) 
LPJmL 

(%) 
pDSSAT 

(%)  
PEGASUS 

(%) 
Multi-GGCM 

(%) 

> 10 
9.16 

(0.14) 
[0.13] 

2.50 
(0.04) 
 [0.02] 

11.47 
(2.06) 
[1.51] 

5.85 
(0.04) 
[0.04] 

2.02 
(0.01) 
[0.01] 

0.84 
(0.07) 
[0.07] 

6.58 
(0.16) 
[0.13] 

5 ~ 10 
7.35 

(0.10) 
[0.05] 

2.90 
(0.04) 
[0.02] 

11.48 
(1.74) 
[1.41] 

4.87 
(0.04) 
[0.05] 

2.71 
(0.01) 
[0.01] 

1.12 
(0.17) 
[0.04] 

7.02 
(0.17) 
[0.16] 

0 ~ 5 
59.93 

(19.36) 
[14.98] 

46.89 
(52.10) 
[51.26] 

62.12 
(27.68) 
[22.52] 

73.89 
(39.40) 
[39.29] 

65.97 
(55.57) 
[55.93] 

64.61 
(62.41) 
[58.64] 

71.63 
(33.68) 
[32.87] 

0 ~ -5 
21.58 

(70.47) 
[73.08] 

46.00 
(41.89) 
[42.70] 

14.62 
(62.91) 
[64.44] 

15.89 
(57.25) 
[58.84] 

26.77 
(37.28) 
[37.06] 

28.46 
(32.89) 
[35.39] 

13.39 
(60.77) 
[60.55] 

-5 ~ -10  
0.67 

(5.00) 
[5.78] 

0.81 
(2.51) 
 [3.34] 

0.11 
(2.68) 
[6.11] 

0.14 
(1.96) 
[0.89] 

1.34 
(3.35) 
[3.44] 

2.38 
(2.22) 
[3.04] 

0.77 
(2.52) 
[2.93] 

< -10 
1.32 

(4.95) 
[5.98] 

0.89 
(3.43) 
[2.26] 

0.20 
(2.93) 
[6.00] 

0.18 
(1.32) 
[0.90] 

1.19 
(3.78) 
[3.56] 

2.60 
(2.24) 
[2.81] 

0.61 
(2.70) 
[3.37] 

a Regressions for out-of-sample validation were run on a panel spanning 1972~2089, in contrast to the in-sample which are 
on 1972~2099  
b Data not available 

 

In order to assess the spatial pattern of the predicted changes in future emulator yields with those of the 

GGCMs’, figure 2.4 illustrates the RB of the emulators geographically, as calculated by equation (2.5) at 

each grid-cell.   
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(a)                                (b)                  (c) 

 
Relative Bias (RB) 

Figure 2.4. Performance of six maize emulators (RB) in predicting % changes in yields for RCP 4.5 (top panel) and RCP 8.5 (bottom panel) in (a) 2030~2064 (b) 2065~2099 and 
(c) 2090~2099, relative to 1972~2004 baseline. White regions denote regions where crop is either not grown (as per MIRCA 2000) or is filtered out in the data-cleaning steps of 
each GGCM. The spatial coverage is thus different across the maps of six GGCMs. Data was unavailable for GAEZ-IMAGE in RCP 4.5. The out-of-sample predictions 
(2090~2099) were made applying the coefficient estimates from regression run on 1972~2089 panel. Positive (negative) RB over a grid-cell implies that the % changes in yields 
predicted by emulator are higher (lower) than the % changes in yields of the corresponding GGCM. 
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Across both RCPs and all three future periods, emulators built on GAEZ-IMAGE, LPJmL and pDSSAT 

have fairly good agreement in predicting % changes in the yields relative to the baseline historical period. 

This is evident from the low RB (within the range of −5~5) over most regions, with a few exceptions 

where the low-base values result in higher disparity in the relative impacts of emulator and GGCM. The 

results are in line with figure 2.4 and the corresponding summary (table 2.1), both of which show the RB 

to be low where the production share of maize is high. 

For PEGASUS, the RB shows contrasting range in the same future period of the two RCPs, with far 

better agreement in the emulation of relative changes in yields for RCP 8.5 scenario. Although the reason 

for this disparity are beyond the scope of this paper requiring detailed knowledge of the simulation setup 

used by the GGCM in the two climate scenarios; a possible explanation could be the growing seasons 

(harvesting dates etc.) that are dynamically assigned by the GGCM in its simulation run20 fall outside the 

definition of our growing seasons months.  

For GGCM GEPIC, the growing seasons are again dynamic as in PEGASUS. Moreover, the simulations 

in GEPIC are run independently every decade to take into account soil nutrient depletion (Rosenzweig et 

al 2014 SI). The ability of our emulator to replicate GEPIC’s non-linear responses to future climate would 

thus be challenging with a generic linear time trend interaction. 

The last of the six individual emulators (LPJ-GUESS) generally over-estimates the % changes in yields 

under all period-scenario combinations, showing a marginal positive RB (1~2.5). It must be noted that 

GGCM LPJ-GUESS predicts potential yields unlimited by nutrient or management constraints21. Any 

analysis of its yields are suitable only if the potential maximum yield in future are being investigated.  

Although the broader stable performance of a multi-GGCM emulator constructed using equation (2.4) is 

evident from figure 2.4 and table 2.1, the maps in figure 2.5 illustrate how the overall responses of the six 

GGCMs’ yields can be harnessed as a single blend of multi-model impacts assessment. 

                                                   
20  See table 2A in Appendix A for GGCMs’ meta-parameters. As highlighted in Rosenzweig et al 2014 SI,  some 
GGCMs (PEGASUS, GEPIC) allow for automatic adjustments of planting and harvesting dates as per the annual 
weather conditions. Although not examined in detail, it is likely that for RCP 4.5 (where the RB in PEGASUS is 
higher compared to RCP 8.5), the GGCM dynamic growing season months are not in agreement with our fixed 
growing season window for all crops~GGCM~period~scenarios combinations. The contrasts in the RB for emulator 
GEPIC across the scenario~periods could also be partly attributed to this reason. Contrasts in inter-model 
divergence of responses are investigated in Chapter 4. 

21 These caveats are discussed in https://www.pik-potsdam.de/research/climate-impacts-and-
vulnerabilities/research/rd2-cross-cutting-activities/isi-mip/data-archive/fast-track-data-archive/data-caveats. 
Although GAEZ-IMAGE also predicts potential yields, unlike LPJ-GUESS its yields are driven by climate and soil 
moisture condition (soil moisture, soil water holding capacity). 



23 
 

 

                                  A. RCP 4.5                                                               B. RCP 8.5 

 

 
       2030~2064              2065~2099               2090~2099                2030~2064              2065~2099              2090~2099 

Figure 2.5. Performance of multi-GGCM maize emulator (RB) in predicting % changes in yields, relative to 
1972~2004 baseline for (A) RCP 4.5 and (B) RCP 8.5. The white regions are grid-cells where crop is either not 
grown (as per MIRCA2000) or is filtered out in the data-cleaning steps of each GGCM. The spatial coverage will 
encompass the earlier map of each of the six GGCMs. Data was unavailable for GAEZ-IMAGE in RCP 4.5 and the 
multi-GGCM is therefore built on five GGCMs. The out-of-sample predictions were made applying the coefficient 
estimates from regression run on 1972~2089 multi-GGCM panel. Positive (negative) RB over a grid-cell implies 
that the % changes in yields predicted by multi-GGCM emulator are higher (lower) than the % changes in mean 
yields of the six GGCMs. 

For both scenarios and across all GGCMs, the emulator RB in the out-of-sample validation are similar to 

in-sample validation (table 2.1 and figures 2.3, 2.4 and 2.5), thus showing the robustness to estimation 

methodology. Considering the heterogeneity across the six GGCMs as well as in their simulation setups 

for the four crops (Rosenzweig et al 2014 SI), it is not surprising that the results do vary by emulator-

crop-period-scenario combinations (figures 2.3-2.4, table 2.1 here and table 4A in Appendix A). More 

importantly, there is no single emulator that consistently outperforms the rest across all four crops. 

Suffice to say that by incorporating multiple crops, GGCMs in different future RCP~epoch combinations; 

our estimation methodology and results are neither overtly dependent on the choice of the underlying 

processes involved in a particular GGCM, nor on the choice of a particular crop whose yield response is 

inadvertently replicated.  

2.3.3 How much is adaptation beneficial? 

We now investigate the ability of our statistical specification to capture the intrinsic adaptation associated 

with the GGCMs’ simulations in historical (1972~2004) and future (2005~2099). For the three emulators 

that incorporated the interaction term (GEPIC, LPJ-GUESS and LPJmL), we make a comparison of how 

much larger the % shocks to yields would be if we stripped out the effects of the types of adaptation the 

GGCMs appear to be assuming. 
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We use the coefficient estimates of / and 3 bins i.e. L term in equation (2.2), estimated from the 

regressions run on 1972~2099 RCP 8.5 for maize. We then predict the changes in yields in the two 

epochs (2030~2064 and 2065~2099) relative to the historical period (1972~2004) as before. The changes 

in maize yields estimated here would imply impacts of climate on yields not taking the potential benefits 

of adaptation into account in the future, relative to the baseline historical period.  We call these ‘without-

adaptation’ predictions. 

For comparison, we retain our earlier predictions of the relative changes in maize yields in future, that in 

addition to L, also accounted for the coefficients of the interaction terms i.e. a term of equation (2.2). 

These are our base specification estimates accounting for potential benefits of adaptation in the future, 

again relative to the same baseline historical period. We call these ‘with-adaptation’ predictions.  

The difference in the percentage changes in yields between without-adaptation and with-adaptation           

-measured as percentage points (>>)-, would give us the estimated potential benefits of using adaptation 

in reducing the impacts of climate change22. To illustrate these graphically, plots in figure 2.6 (shown as 

avoided % loss of production across maize grid-cells) depict the contributions of the adaptation (implicit 

to the three GGCMs) in moderating yield declines or in symmetrically amplifying yield increases.  

As evident from figure 2.6, we find noteworthy (>  5 >>) potential positive benefits of adaptation across 

major maize growing regions for the three emulators. The added benefit is highest for LPJ-GUESS which 

predicts potential yields in ISIMIP-FT and shows a consistent pattern across all regions. GEPIC and 

LPJmL on the other hand show spatial heterogeneity in potential benefits with some regions showing 

contrasting impacts of adaptation (especially across India and central Africa). 

 

 

 

 

 

 

 

                                                   
22 This is based on the assumption that the present crop growing regions used in our study (based on MIRCA2000) 
would remain constant in the future. However, due to lack of available data for land-use from ISIMIP-FT and to 
remain consistent within the assumptions of GGCMs’ simulation setup, we base our analysis on this notion. 
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         GEPIC         LPJ-GUESS               LPJmL 

    

Mid-Century (2030~2064 RCP 8.5)   End-Century (2065~2099 RCP 8.5) 

   GEPIC                       LPJ-GUESS             LPJmL 

 

 

 

Figure 2.6. (A) Change in % maize yield shock (��) in RCP 8.5 scenario, weighted by grid-cell mean annual 
production (!), in 2030~2064 (orange) and 2065~2099 (purple); both relative to 1972~2004. Maps of change in % 
maize yield shock (��) for RCP 8.5 scenario, in (B) 2030~2064 and (C) 2065~2099, relative to 1972~2004. The 
difference is calculated as [% changes in emulator yields accounting for adaptation] – [% changes in emulator yields 
not accounting for adaptation]. 
 
 

A 

B 

C 
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It must be borne in mind that the type of adaptation varies across the three GGCMs (Rosenzweig et al 

2014 SI) and in the absence of finer details of how adaptation is modelled at regional scales, the 

implausible benefits of adaptation across these pockets of growing regions would be difficult to decipher. 

Conclusions 

We develop an ensemble of statistical emulators for four different rainfed crops, at a global, fine scale, 

gridded resolution. Constructed independently on six different GGCMs as well as on a combined multi-

model panel of six GGCMs; our simple, flexible and robust emulator can have wide-ranging applications 

in studies assessing impacts of climate change on crop yields. But perhaps the biggest attraction of our 

reduced form emulator is the rapid implementation as a surrogate model, where-in only two weather 

variables (/ and 3; as bins) are required to be constructed from the output of a ESM. Further, by 

incorporating interactions of / and 3 bins with a simple linear time trend, the emulator is capable of 

capturing the underlying adaptation and management practices implicit in the GGCMs’ simulations. 

Though simple, the emulator can be easily combined with multiple realizations of future climate for 

analysis of climate impacts23 on crops and ultimately be linked to IAMs.  

Yet, we recognize the possible limitations of this study and scope for further studies. For instance, our 

choice of fixed growing season months (_DYJ for Southern Hemisphere. and ]YY^ for Northern 

Hemisphere.) across all six GGCMs that do have heterogeneous growing seasons could potentially forego 

heat-moisture interaction falling outside the growing season bins. It is envisaged that future simulation 

protocols of ISI-MIP224 would ensure homogeneity for GGCM growing season, addressing the caveat in 

this study.  

We have not attempted to fit a statistical model using the data from the irrigated regime of GGCMs 

simulations. This is primarily because the GGCMs use highly varying degree of parameterization 

schemes in their simulation setup and the same is difficult to specify as a single regression fitting across 

all GGCMs.  Again, ISI-MIP2 is anticipated to include systematic harmonization of simulation runs, and 

thus be more suitable for such an exercise.  

The motive to use crop yield data not accounting for CFE was deliberate. By basing our study on 

constant- 'GH runs, our aim has been to examine what a basic emulator of heat and moisture effects of 

climate change would look like, controlling completely for the confounding effects of 'GH. Nonetheless, 

                                                   
23 The wider scope of such an emulator therefore has a potential application for both with and without adaptive 
strategies in agriculture.  

24 See ISI-MIP2 protocol, www.isi-mip.org 
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future yields accounting for CFE can be predicted using our present methodology, by incorporating a 

post-estimation correction (as done recently by Sue Wing et al 2015). Left for work to be done in future, 

such a technique would be analogous to ‘ON/OFF’ switch, thereby negating the need to re-calibrate the 

emulator independently on crop yield data with CFE.  

Closing Remarks 

The emulators I develop in this paper are deliberately simple, as the objective was to develop emulators 

that can be rapidly combined with multiple realizations of future climate for climate risk analysis and 

ultimately be linked to IAMs. Because the GGCMs’ simulations in ISIMIP-FT are not harmonized with a 

common set of input parameters (such as crop growing seasons, adaptation and management practices 

etc.), it is difficult to identify the intrinsic parameters within the six GGCMs that play a prominent role in 

the divergence of results. The lack of calibration (or contrasting calibration techniques) further make it 

difficult to rank the GGCMs in their overall performance of replicating historical crop yields. It is 

therefore recommended to apply the GGCMs as a multi-model ensemble in impact estimation studies. 

The work in the succeeding chapter focuses on testing the robustness to different meteorological variables 

and empirical specifications, thus refining the statistical emulators built in this chapter. Moreover, in 

Chapter 4 where the focus shifts to U.S. counties, I attempt to investigate the underlying drivers of 

divergence in the GGCMs’ yield responses. Undertaking such an exhaustive task is the need of the hour 

in inter-model and inter-method comparison exercises.  
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Chapter 3: Robustness Tests of Statistical Emulator 

Preface 

The emulator developed in Chapter 2 is evaluated by a series of robustness checks. This chapter explores 

possible refinements of the statistical emulator with respect to:   i) the choice of explanatory variables and 

ii) the statistical specification, by considering also the potential role of further stratifying the response of 

crop yields by Agro-Ecological Zones (AEZs). Specifically, I investigate the role of Vapor Pressure 

Deficit (C3D) as an added predictor variable and compare the performance of emulators with the 

specifications of Chapter 2 that were built on / and 3. Further, to ensure that the results summarized in 

Chapter 2 did not depend on an overly specific choice of regression specification, and in line with 

common practice in statistical modelling (e.g. Urban et al 2015, Schlenker and Roberts 2009, Baylis et al 

2011), I consider two further suites of regression models (a) base specification stratified by group of six 

AEZs and (b) Spatial Lag of Covariates (SLX). I then discuss the degree of improvement these further 

refinements can achieve over the base specification considered in Chapter 2. For brevity of space, all 

regression specifications in this chapter are re-run on the panel data for crop maize (Chapter 2), for 

1972~2089 RCP 8.5. The predictions for the out-of-sample (2090~2099 RCP 8.5) would thus enable a 

comparison with the corresponding out-of-sample estimates made in Chapter 2. Unless explicitly stated 

otherwise, the definitions/interpretations of all parameters (such as growing season months, methodology 

to calculate relative bias, interpretation of coefficient estimates etc.) remain the same as in Chapter 2. 

The proceedings of this chapter are in preparation for submission to Journal of Agriculture and Forest 

Meteorology, and are co-authored by Enrica De Cian and Ian Sue Wing. Baring few minor superficial 

changes to the figures and minor changes to the text, the manuscript is largely unchanged from the 

version of the paper under preparation. I designed and performed research, analyzed the data and wrote 

the paper. Enrica De Cian and Ian Sue Wing provided scientific input. All co-authors are involved in the 

revision of the final text for submission to the journal.  
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Main Text 

3.1 Vapor Pressure Deficit (VPD) 

C3D is a meteorological variable that measures the dryness of the atmosphere thereby providing an 

indication of the current evaporation potential of the air. Expressed in standard pressure units such as 

millibars (<E) or hectoPascals (ℎ3@)25, C3D is commonly used as a guidance parameter in agriculture to 

determine condensation threat, as well as irrigation and environmental control management decisions 

(Wang et al 2004).  As emphasized by Anderson (1936) -“the strain under which an organism is placed in 

maintaining a water balance during temperature changes is much more clearly shown by noting the C3D 

than by recording the relative humidity (RH)”-, the advantage of using C3D over fw is that the former is 

an absolute measure of atmospheric moisture independent of temperature (Seager et al 2015). C3D has 

also been discussed in recent agronomic studies (notably Lobell et al 2013, Cai et al 2012) and in the 

absence of soil moisture data26, can be considered as a useful proxy27 for determining the plant water 

stress. The optimum range for C3D varies with both crop type as well as its growth stage (see table 3.1 

for a general guidance on range of optimum C3D values for crops).  

Table 3.1. Typical optimum ranges of C3D for most crops (Source:  http://www.just4growers.com/ ). Orange: ideal; 
White: Acceptable, Light blue: too humid; Dark blue: too dry. 

 

                                                   
25 1<E = 1ℎ3@ 

26 Unlike data for soil moisture, both mean daily fw and mean daily / are available in ISIMIP-FT. 

27 By itself though, C3D is not a direct or actual measurement of water loss/needs for crops. 
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Mathematically, C3D is the difference between the saturation vapor pressure (8x) of the air and its water 

vapor content or actual vapor pressure(8y), calculated as shown below in equations 3.1-3.3 (Anderson 

1936).  Given mean daily relative humidity (fw) in percent and mean daily temperature (/) in degree 

Celsius (°'), 

 C3D(ℎ3@) =  8x − 8y                                                                                                               (3.1) 

where  

8x(ℎ3@)  = 6.118[ {|.}|~
~�}�|.�]                                                                                                            (3.2) 

8y(ℎ3@) =  8x × (T�����)
T��                                                                                                            (3.3) 

3.2 Results with VPD as an added predictor variable 

3.2.1 Regression analyses (1972~2089 RCP 8.5) 

I revisit the base specifications defined in Chapter 2 for the two sets of GGCMs (i.e. equation 2.2 for 

GGCMs GEPIC, LPJ-GUESS and LPJmL; and equation 2.3 for GGCMs GAEZ-IMAGE, pDSSAT and 

PEGASUS). However, in addition to / and 3, the vector of meteorological covariates (I) would now 

also include C3D. I refer to the new specification as the base_VPD specification. 

The bins {C3DT, … , C3D�} are counts of number of days over the growing season at each grid-cell spent 

in g intervals of C3D(ℎ3@) where:  g = {< 3, 3~5, 5~7, 7~9, 9~11, > 11} 28  

3.2.1 Assessing emulator goodness of fit (GOF), base_VPD specification 

I repeat the out-of-sample validation as done earlier in Chapter 2 to evaluate the relative bias (RB) of each 

of the six GGCM emulators. Figure 3.1A shows the distribution of RB weighted by grid-cell mean annual 

production in tons (t), for maize, in 2090~2099 under RCP 8.5 scenario. In order to assess the spatial 

pattern of the predicted changes in future emulator yields with those of the GGCMs’, figure 3.1B 

illustrates the RB of the emulators geographically.  

 

 

 

                                                   
28 The bin g = 7~9 ℎ3@ is omitted in regressions as reference category. As with / and 3; for each C3D bin except 
the extreme lower and upper bins, the lower range is included in the count. The extreme bins are open-ended. 
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(A)                                                                       (B) 

 
GEPIC    GAEZ-IMAGE   LPJ-GUESS   LPJmL   pDSSAT    PEGASUS           
 
Figure 3.1 (A) Distribution of RB (%) weighted by grid-cell mean annual production ("#$%, ") and                         
(B) Performance of six maize emulator (RB) in predicting % changes; for maize in 2090~2099 RCP 8.5, relative to 
1972~2089 baseline.  
 
I find that including C3D as a predictor variable by and large does not improve the emulators’ GOF vis-à-

vis the base specification. Although the estimated coefficients of C3D are statistically significant        

(> < 0.05) across all GGCMs (table 4B in Appendix B), the predictions of the individual emulators 

(gauged by the RB) are only marginally better in comparison to the base specification. This is evident 

when comparing the figures 3.1A and 3.1B with the corresponding 2090~2099 RCP8.5 scenario figures 

2.3A(c) and 2.4(c) of Chapter 2. Moreover, as summarized in table 3.2, for each emulator the share of 

maize production (%) by RB intervals are near identical for the base and base_VPD specifications (Table 

2.1 of Chapter 2). 
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Table 3.2. Share of maize production (%) with the corresponding RB intervals, for 2090~2099 RCP8.5 using 
base_VPD and base (in square braces) specifications.   

RB 
GEPIC 

(%) 
GAEZ-IMAGE 

(%) 
LPJ-GUESS 

(%) 
LPJmL 

(%) 
pDSSAT 

(%)  
PEGASUS 

(%) 

> 10 0.17 
 [0.13] 

0.02 
[0.02] 

1.35 
 [1.51] 

0.05 
 [0.04] 

0.00 
 [0.01] 

0.06 
[0.07] 

5 ~ 10 0.13 
 [0.05] 

0.04 
 [0.02] 

1.33 
 [1.41] 

0.08 
 [0.05] 

0.01 
 [0.01] 

0.09 
[0.04] 

0 ~ 5 17.78 
 [14.98] 

50.86 
 [51.26] 

21.51 
 [22.52] 

40.43 
[39.29] 

55.98 
 [55.93] 

54.51 
[58.64] 

0 ~ -5 70.71 
 [73.08] 

43.53 
 [42.70] 

63.37 
 [64.44] 

57.72  
[58.84] 

37.53 
 [37.06] 

40.08 
[35.39] 

-5 ~ -10  5.52 
 [5.78] 

3.15 
[3.34] 

6.11 
 [6.11] 

0.87 
[0.89] 

3.27 
 [3.44] 

2.90 
[3.04] 

< -10 5.70 
 [5.98] 

2.41 
 [2.26] 

6.32 
 [6.00] 

0.86 
[0.90] 

3.22 
 [3.56] 

2.36 
[2.81] 

 

3.3 Robustness checks with additional regression specifications 

To ensure my results did not depend on an overly specific choice of regression specification, and in line 

with common practice in statistical modelling (e.g. Urban et al 2015, Schlenker and Roberts 2009, Baylis 

et al 2011), I reanalyze the multi-GGCM dataset of weather and yields using two additional regression 

models29.  

3.3.1 Base specification stratified by Agro-Ecological Zones (AEZ) 

A common criticism of empirical approaches in agronomic studies draws from the notion that they have 

limited (agronomic) meaning, even if statistically correct (Lobell et al 2011). For instance, the dynamics 

of plant water uptake (or soil-plant-atmosphere continuum) are conveniently ignored, either due to lack of 

data or for simplicity. Moreover, the base specification (in Chapter 2) was built on the assumption that the 

response of crop yields to weather, are uniform across all grid cells. The coefficient estimates when not 

differentiated according to the responses of crop growth process by regions (e.g. having different soil 

types), can become questionable (Cai et al 2012).  

Driven by these reasons, I begin with a specification that tests the spatial stability of the base parameters 

by geographically stratifying L by six broad crop suitability regions (indexed by �) derived from Lee et 

                                                   
29 The additional specifications are run with / and 3 as covariates, in line with the base specification of Chapter 2.  
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al’s (2005) agro-ecological zones (AEZs). Each AEZ is formed as a combination of the duration of crop 

growing period and a climate region. The eighteen AEZs originally defined are further consolidated into 

six broader AEZs30 (details in Section 1 of Appendix B).  

 6M,N = Σ�IM(�),NL� + PM + RM,N    (3.4) 

As evident from equation (3.4), stratifying L would amount to interacting the individual / and 3 bins 

with a dummy variable (AEZ-Group), thus involving a further number of  / and 3 interaction terms in the 

regression. I therefore restrict my analyses to the group of GGCMs (namely GAEZ-IMAGE, pDSSAT 

and PEGASUS) that did not include the time trend interaction with covariates (equation 2.3 in Chapter 2). 

3.3.2 Spatial Panel Model (SPM) 

As shown by Auffhammer et al (2013), climate variables exhibit inherent correlation across space and 

time. However, most empirical work in agronomic literature (e.g. Schlenker and Roberts 2009, Lobell et 

al 2012) implement robust standard errors (SEs) as proposed by Conley (1999) or (Hsiang 2010). This 

makes inferences ‘robust’, conditional on the spatial dependence (of unknown form) being confined to the 

error term. Nevertheless, by using robust SEs (as also implemented in Chapter 2), spatial dependence in 

the data generating process (here climate variables) do not get addressed. Not accounting for spatial 

dependence in dependent and/or independent variables could lead to biased and/or inconsistent estimates 

of the coefficients (Elhorst 2010, Auffhammer et al 2013). In contrast, the cost of ignoring spatial 

dependence in the disturbances if any, results only in a loss of efficiency (Elhorst 2010). Both these 

potential important implications could not be more relevant than in a gridded panel data, like the one in 

this study constructed from the ESM data, at a fine scale resolution. Subsequently, a key takeaway of this 

study reiterates that the coefficient estimates from studies not accounting for spatial dependence of any 

form need to be taken with caution (Baylis et al 2011).   

My second specification for robustness check includes spatially lagged regressors constructed with a 

weight matrix (W) as additional explanatory variables.  The Spatial Lag of Covariates model (SLX) 

described by equation (3.5) is an extension of the base specification (equation 2.3): 

 6M,N = �IM,N� + IM,NL + PM + RM,N (3.5) 

                                                   
30 To facilitate comparison of results, the six broad zones used in the AEZ specification are grouped using the same 
definition as in Blanc and Sultan (2015). 
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where � is a row-standardized matrix of spatial weights constructed using the “[-nearest neighbour” 

method ([ = 4) 31, L identifies the direct effects, and the spatial lag parameter, �, captures the spillover 

effects of meteorological predictors in surrounding cells. Following the reasons cited for restricting the 

number of interaction terms, I examine the suitability of SLX on the same set of GGCMs that were used 

in the AEZ specification. The regression results of the three GGCMs are summarized in table 6B of 

Appendix B. 

3.4 Assessing emulator GOF, using AEZ and SLX specifications 

3.4.1 AEZ Specification 

I see evidence that response of crop yields to weather variables varies geographically, thus implying 

differential responses of crop yields under heterogeneous cropping zones. The substantial heterogeneity in 

the coefficients across the six AEZs is noticeable from the regression summary of the three GGCMs 

(table 5B in Appendix B). The improvement in results compared to the base specification are marginal 

and in line with earlier findings of Blanc and Sultan (2015).  

For a comparison of results with the base specification, I repeat the out-of-sample validation as done 

earlier for base_VPD specification. To facilitate easier comparison between the base and AEZ 

specifications (as well as between base and SLX specifications), I overlay their respective GGCM 

distributions of RB weighted by grid-cell mean annual production (figure 3.2).  

 

 

 

 

 

 

                                                   
31 Constructing � with alternate forms (such as distance cut off), as well as changing the [ parameter, did not alter 
the results significantly. This is in line with findings in spatial econometrics literature -e.g. LeSage and Pace (2014)-. 
Due to brevity of space, although other SPMs (such as Spatial Durbin Error Model, SDEM) were examined to 
capture the true data generating process (DGP), the discussion is kept limited to the SLX model. Nonetheless, for a 
more comprehensive discussion of different spatial models, readers are guided to LeSage 2008 and Elhorst 2010. 
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         GAEZ-IMAGE                                    pDSSAT                                   PEGASUS 

 

                                                            BASE       AEZ        SLX           

Figure 3.2 Distribution of RB weighted by grid-cell mean annual production (") for maize in 2090~2099 RCP 8.5, 
relative to 1972~2089 baseline. The three specifications (a) Base (orange) (b) AEZ (purple) and (c) SLX (pink) are 
overlaid for easier interpretation 

In each of the three GGCM emulators, the distribution for AEZ specification is leptokurtic (fatter tails or 

positive excessive kurtosis) compared to the platykurtic distribution (thinner tails or negative excessive 

kurtosis) of the base specification. This is most prominent for pDSSAT, implying higher RB across more 

grid-cells with lower share of mean annual production. The distributions for the AEZ specifications are 

also negatively skewed, compared to the slight positive skew of the corresponding base specifications for 

GAEZ-IMAGE, and near normal for pDSSAT and PEGASUS. This implies a general tendency of the 

AEZ specification to estimate lesser negative impacts (or higher positive benefits) vis-à-vis the 

corresponding GGCMs’ actual estimates. Both these characteristics (kurtosis and skewness) imply 

generally insignificant improvements (if not poorer) in results for the AEZ in comparison to the base 

specification.  

To further facilitate the comparison in results of between the base and AEZ specifications, figure 3.3 

shows empirical cumulative distribution function (ECDF) for the same crop out-of-sample validation. The 

ECDF of AEZ specification across all three GGCM emulators has a similar positive shift in RB in 

comparison to the corresponding base specification. This implies a general tendency of the AEZ 

specification to systematically over-predict vis-à-vis the corresponding GGCMs’ actual estimates. 
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         GAEZ-IMAGE                                     pDSSAT                                       PEGASUS 

     

                                                             BASE         AEZ          SLX      

Figure 3.3 ECDF of RB weighted by grid-cell mean annual production (") for maize in 2090~2099 RCP 8.5, 
relative to 1972~2089 baseline. The three specifications (a) Base (orange) (b) AEZ (purple) and (c) SLX (pink) are 
overlaid for easier interpretation 

It must be noted that following the data cleaning steps in the GGCMs’ panels, and the subsequent 

grouping of the grid-cells into six AEZs; the sample size (number of grid-cells) in most AEZs reduce 

remarkably (table 3B in Appendix B). Consequently, the AEZ specification gives statistically 

insignificant (> > 0.05) estimates for a large number of coefficients across each AEZ (table 5B in 

Appendix B). It is therefore plausible that in a larger and reliable sample, using coefficients for spatially 

heterogeneous zones would improve the results even further. 

3.4.2 SLX Specification 

Focusing back on figure 3.2, the distribution of the SLX specification (pink) shows a clear improvement 

in using a specification accounting for spatial dependence in the explanatory variables. The same two 

characteristics (kurtosis and skewness) reveal patterns that not only imply lower RB across more grid-

cells with lower share of mean annual production, but also a near neutral mean bias suggesting the SLX 

specification agrees more with the corresponding GGCMs’ actual estimates compared to the base 

specification.  The same is even more prominent when comparing the ECDFs of the SLX (pink) and base 

(orange) specifications in figure 3.3. The bias in the variance is much lower for the SLX compared to the 

base specification. 
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Conclusions  

The simple specification used in construction of emulators in Chapter 2 were refined here and put through 

a series of comparison and robustness checks. Including an additional predictor variable (C3D) to the 

base specification of Chapter 2 did not reveal significant differences in results, thus retaining the model 

specification using only / and 3 as the preferred choice of predictor variables.   

To investigate the potential geographic heterogeneity of the response of crop yields to weather, the next 

exercise in my sensitivity and robustness checks made use of AEZs. Modifying the base specification of 

Chapter 2, regressions were repeated on three GGCMs allowing for the slope parameter to interact with 

six groups of AEZs carved out of the original eighteen AEZs. The results show that although 

differentiating the coefficient estimates of the covariates has a basis for stratifying the responses of crop 

yields geographically, the smaller sample size in the AEZ specification does not improve the overall bias 

of the three emulators’ vis-à-vis their base specification. 

Finally, utilizing the potential strengths of SPMs from a relatively new subject of spatial econometrics, I 

investigated the suitability of a simple SPM (i.e. SLX) in the construction of the emulator. The results of 

the SLX model reveal the importance of explicitly accounting for spatial dependence in a fine scale 

gridded data, in order to obtain reliable and consistent estimates. A detailed examination of various SPMs 

could potentially lead to a further improvised version of an emulator and is recommended for future work. 

However, the further improvement in results could come at the cost of added complexity, thus deviating 

from the core theme of building an emulator, that of simplicity and flexibility. 

Closing remarks 

Taking a step further in chapter 4, the focus shifts from global to regional spatial domains by restricting 

the GGCM data to United States (U.S.) counties. Moreover, for a head-to-head comparison with the 

coefficient estimates derived from the GGCM data, historical observed U.S. county crop yields from U.S. 

Department of Agriculture (USDA) are utilized for calibrating an empirical model. The comparison will 

throw light on divergence of estimates made using the two sets of data, and implications of the differences 

between the GGCMs’ aggregated responses under future climate change scenarios.  
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Chapter 4: Simulated vs. Empirical Weather Responsiveness of Crop Yields: 

U.S. Evidence and Implications for the Agricultural Impacts of Climate Change 

 

Preface 

This chapter focuses on an Inter-method comparison between the coefficient estimates of a statistical 

emulator (calibrated on data from GGCMs as done in Chapter 2), with empirical models built on 

historical observed data. Shifting focus from global to regional scales, the data used here (for both 

GGCMs and historical observed) spans the United States (U.S.) counties. For calibrating empirical 

models, I utilize the historical observed crop yields from the U.S. Department of Agriculture (USDA).   

The core objective of this study is to compare:  

(i) GGCM simulated historical mean yields (1972-2004) with the actual historical observed yields for the 

U.S. counties (1972-2004)  

(ii) The estimated coefficients of the temperature (/) and precipitation (3) bins across the six emulators 

(from regressions run on ISIMIP-FT data for the U.S. counties) 

(iii) The emulators’ estimated / and 3 coefficients with those of the empirical model (calibrated on 

USDA panel data); and the subsequent implications on predicted yield changes under future climate 

warming scenario.  

The proceedings of this chapter co-authored by Enrica De Cian and Ian Sue Wing, are submitted to the 

special issue of Environmental Research Letters (ERL): Focus on An Inter-method Comparison of 

Climate Change Impacts on Agriculture. Baring few minor superficial changes to the figures and minor 

changes to the text, the manuscript is largely unchanged from the version of the paper submitted. I 

designed and performed research with key scientific inputs from Enrica De Cian and Ian Sue Wing. 

Further, I analyzed the data and wrote the paper. All co-authors were involved in the revision of the final 

paper submitted to ERL, with the same title. 
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Main Text 

Abstract 

Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate 

change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing 

can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and 

implications of this divergence—both among GGCMs and between GGCMs and historical observations. We 

examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact 

Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1972-2004 hindcast yields over the 

coterminous United States (U.S.) against U.S. Dept. of Agriculture (USDA) time series for >1,000 counties. 

Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop 

yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that 15-50% 

of the variance in both simulated and observed yields is attributable to weather variation. GGCMs have difficulty 

reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show 

yields to be more weather-sensitive than in the observational record—not only in response to adverse exposures to 

extreme high temperature or low precipitation, but over the entire range of heat and moisture conditions. This 

disparity is largely attributable to heterogeneity in GGCMs’ responses, as opposed to uncertainty in historical 

weather forcings, and is responsible for widely divergent impacts of climate on future crop yields. 

 

4.1 Introduction  

Climate change will adversely impact a wide range of human systems (IPCC 2014). The agriculture 

sector, particularly field crops, is especially vulnerable because production is both strongly weather 

dependent and exposed to meteorological shifts. Exposure of maize, wheat, soybeans and other food 

staples to high temperature and low precipitation extremes portend declining yields. This has been 

forcefully demonstrated by the empirical climate change economics literature, through statistical 

estimation of reduced-form responses of yields to weather shocks using historically observed production, 

harvested area, temperature and precipitation in many locations across multiple years (e.g. Lobell et al 

2011, Porter et al 2014, Schlenker and Lobell 2010, Tack et al 2015). Additional evidence comes from 

process-based crop models, which simulate the detailed influences on plant growth of a wide array of 

weather variables, plant genotypes, environmental factors such as the carbon dioxide (CO2) fertilization 

effect (CFE), soil quality or pests, and agronomic adaptations such as irrigation, fertilizer application, and 

the timing of planting and harvesting (Elliott et al 2014, Bassu et al 2014, Rosenzweig et al 2014).  
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Whereas the geographic domain of empirical studies is often limited to individual countries or regions 

with a sufficient number of historical observations32, a growing number of process-based global gridded 

crop models (GGCMs) generate results on crop growth under different climatic conditions driven by earth 

system model (ESM) projections at the grid cell level across the globe (see Deryng et al 2011, 

Rosenzweig et al 2014, and Elliott et al 2014 for further discussion). This capability enables GGCMs to 

generate a consistent picture of climate change impacts on crop yield at broad spatial scales. 

However, confidence in the resulting projections of agricultural impacts turn on the fidelity with which 

GGCMs capture the effects of changing meteorology on yields. GGCMs represent the dynamics of plant 

growth through a high number of parameters that require calibration, whose values are uncertain and may 

vary geographically. Customary techniques for validating parameterized models involve statistical 

evaluation of their ability to reproduce point estimates of yields at different locations, for example at field 

trial sites or over spatially aggregated production regions under year-to-year variation in weather 

conditions (for excellent recent examples, see Morell et al 2016, Müller et al 2016 under review). 

 However, comparatively little attention has been paid to how the aggregate responses of yields to heat 

and moisture simulated by GGCMs stack up against corresponding empirically-derived responses for 

real-world agricultural systems33. Recent applications of econometric modeling techniques to cross-

section/time-series datasets of crop yields generated by GGCM inter-comparison exercises have focused 

on constructing reduced-form statistical emulators of single (Oyebamiji et al 2015) or multiple-GGCM 

(Blanc and Sultan 2015) simulations of one or more crops. However, we are not aware of published head-

to-head comparison between process simulations and econometric models trained on observations. It is 

this gap in the literature that we seek to address. 

Our strategy is to elucidate and compare the aggregate responses of observed and GGCM-simulated 

yields to observed and ESM-simulated temperature and precipitation under current climatic conditions. 

We pose six key questions: 

Q.I How well do the outputs of GGCM hindcast simulations match historically observed yields? 

Q.II Are GGCMs able to reproduce the correlations between observed yields and adverse (i.e., high 

temperature and low precipitation) weather extremes seen in the observational record? 

                                                   
32 For examples, see Iglesias et al 2000 for Spain, Lobell and Burke 2010 for U.S. counties, Lobell et al 2012 for 
India, Schlenker and Lobell 2010 for Sub-Saharan Africa. 

33 For instance, see (Lobell and Burke 2010 and Watson et al 2015), although both discussions are limited to a single 
crop model. 
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Q.III How similar are GGCM-simulated and observed yield responses, under not only adverse 

extremes, but the full range of weather conditions over crops’ growing seasons. 

Q.IV Do differences between GGCMs and observations in the weather-responsive component of yields 

arise primarily because of divergent meteorological forcings (i.e., the difference in exposures 

between reanalysis data and ESM historical simulations) or divergence in GGCMs’ simulated 

responses and actual agricultural system responses to these forcings? 

Q.V What do the estimated response functions imply for the impacts of climate change-driven shifts in 

temperature and precipitation on future United States (U.S.) crop yields? 

Q.VI Which GGCMSs’ attributes are correlated with the divergence of crop yield responses from the 

empirical estimates based on historical observations? 

To obtain answers we use statistical methods to extract and compare the responses of yield to weather 

shocks for two sets of data that span the same temporal and spatial domain: rainfed maize, wheat and 

soybeans in the coterminous U.S. over the period 1972-2004. For crop models we use the outputs of  runs 

of a suite of six GGCMs fielded by the Inter-Sectoral Impact Model Intercomparison Project Fast-Track 

(ISIMIP-FT) exercise (Warszawski et al 2013, Rosenzweig et al 2014, Frieler et al 2015), along with 

their meteorological forcings (Hempel et al 2013). For historical observations we use U.S. Dept. of 

Agriculture (USDA) multi-decadal time series of production and harvested area at the fine spatial scale of 

counties—whose areal extents are comparable in size to GGCMs’ grid cells across U.S. farm states, 

matched to high-frequency weather exposures from a climate reanalysis dataset. 

The rest of the chapter is organized as follows. Section 4.2 discusses our data and elaborates the methods 

we use to answer questions I-V. A discussion of the results is provided in section 4.3. We summarize our 

findings with the associated caveats and recommendations for future research in section 4.4. 

  

4.2 Methods 

Our data consist of a set of unbalanced panels of maize, wheat and soybean yields (*) that are either 

observed or modeled at 7 areal units over " years, and matching daily observed or simulated growing 

season temperature (/) and precipitation (3) for the same locations and periods. Historical crop yields 

were computed from U.S. county records of production and harvested area tabulated by the USDA 
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National Agricultural Statistics Service’s Quickstats 2.0 database.34 Simulated hindcast yields are drawn 

from (Rosenzweig et al 2014) for six GGCMs: GEPIC (Liu et al 2007), GAEZ-IMAGE (van Vuuren et al 

2006), LPJ-GUESS (Sitch et al 2003), LPJmL (BONDEAU et al 2007, Sitch et al 2003), pDSSAT 

(Elliott et al 2013, Jones et al 2003)  and PEGASUS (Deryng et al 2011). GGCMs produce yields on a 

0.5° grid, and are forced by historical bias-corrected meteorology simulated by the HadGEM2-ES climate 

model (Jones et al 2011) at the same resolution.35 Our source of historical weather was the Global Land 

Data Assimilation System (GLDAS2) forcing files of 3-hourly meteorological fields on a 1° grid (Rodell 

et al 2004), spatially interpolated to U.S. counties. Further details of the data and models are given in 

sections 1-3 of Appendix C. 

Assessing GGCMs’ skill (Q.I) is not as simple as it might seem, since the GAEZ-IMAGE and LPJ-

GUESS models simulate potential yields, while the remainder simulate actual yields, making apples-to-

apples comparison difficult. As well, different models are calibrated using historical yields from different 

sources, whereas others are not calibrated (see Rosenzweig et al 2014 SI for further details) Mindful of 

these caveats, our approach is to characterize the distribution of the differences between the cross-

section/time-series yield anomalies of GGCMs and observations, *∗ M,Noopq−∗*M,N����. To facilitate 

comparison, we use a normalization that expresses the anomalies as fractional deviations from each 

location’s long-run mean,  *M,N∗ = *M,N/*�M  − 1. If *∗ M,Noopq and *M,N���� are similar, then we would expect 

the probability density function (PDF) of the anomaly difference (defined above) to be sharply peaked 

with zero mean. 

To address question Q.II we elucidate the covariation between yield anomalies and adverse weather—

which we define as high-temperature and low-precipitation extremes in the respective forcing datasets. 

We apply a fixed annual growing season36 to our GGCM input and climate reanalysis data, within which 

we calculate the cumulative days of each county’s exposure to � intervals of temperature, +��, and [ 

intervals of precipitation, +��. For each county we then compute the temporal correlations between *M∗  

and the extreme bins of these variables (�: / >30°C, [: 3 ≤5mm) in our ESM-simulated and 

observational datasets.37 

                                                   
34 http://quickstats.nass.usda.gov/ 

35 GGCM inputs and outputs were downloaded from the ISIMIP-FT archive:                                                 

    https://esg.pik-potsdam.de/search/isimip-ft/ 

36 For both datasets, we define the growing season as May-August (MJJA). See section 1.3 in Appendix C 

37 See section 3 in Appendix C for details of binning intervals used in regressions. 
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Our answer to Q.III extends the foregoing analysis to the entire range of growing season temperature and 

precipitation exposures, and constitutes the meat of the paper. We quantify the potentially nonlinear 

influence of climate on yields using a semi-parametric cross-section/time-series regression model of the 

kind developed in the empirical climate-change impacts literature (Schlenker and Roberts 2006, 2009, 

Deschênes and Greenstone 2007, 2012, Lobell et al 2011, Ortiz-Bobea 2013, Burke and Emerick 2015). 

The dependent variable is the natural logarithm of annual yield (6), predictors are a vector of location-

specific effects (�, which capture the influence of unobserved time-invariant local characteristics such as 

topography and soils), a vector of time effects (Q, which capture the influence of unobserved common 

time-varying shocks) and the vectors of climatic covariates +�� and +�� described above, while R is a 

random disturbance term: 

6M,N = �M + QN + Σ����+�,M,N� + Σ����+�,M,N� + RM,N (4.1) 

Eq. (4.1) is estimated via ordinary least squares on our observational dataset, the datasets of simulated 

weather inputs and yield outputs corresponding to each of our GGCMs, and multi-model panel consisting 

of the combined inputs and outputs of the six GGCMs. The latter merged regression model includes a 

GGCM dimension along which there is likely to be idiosyncratic variation. We control statistically for 

this by introducing an additional model-specific factor into eq. (4.1). 

Of interest in eq. (4.1) are the estimated parameters L� and  L�, vectors of semi-elasticities that indicate 

the percentage shift in yields relative to their conditional mean levels in response to an additional day in a 

given interval of heat or moisture. Each of their constituent elements captures the distinct marginal effect 

of exposure within the corresponding interval (e.g., the average impact of an additional day with 25-27°C 

versus >30°C average temperature). Collectively, the elements flexibly trace out the aggregate response 

of yields to heat and moisture as piecewise linear splines. The latter are statistically identified from the 

contemporaneous covariation between observed yields and meteorology within each interval, as well as 

the distribution of weather exposures across intervals in our transformed datasets. 

Empirical and ISIMIP-FT studies of agricultural impacts of climate change employ different 

meteorological inputs, with the former using weather station observations or reanalysis datasets and the 

latter using the outputs of ESM simulations. The lack of standardization between the two approaches 

complicates comparison of USDA and GGCM responses of yield to weather and motivates Q.IV, which 

our empirical modeling strategy provides a way to address. 
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The weather-responsive component of log yield at each location is determined by the fitted temperature 

and precipitation semi-elasticities (L�� and L��): 

�(	M, 
M) = Σ�����+�,M� + Σ�����+�,M�   (4.2) 

 

The difference between the weather-responsive components of each GGCM’s historical run and the 

observations is 

 Δ� = �(	M , 
M)oopq − �(	M, 
M)���� = Σ�����,oopq+�,M�,m�q + Σ�����,oopq+�,M�,m�q 

 −�Σ�����,����+�,M�,� y¡y� + Σ�����,����+�,M�,� y¡y�¢ (4.3) 
Adding and subtracting cross-terms on the right-hand side of eq. (4.3) and evaluating the exposure 

covariates in the resulting expression at their 1972-2004 climatic means allows us to decompose the 

difference above into two terms, one of which captures the effect of divergence due to differences in 

climate forcing and the other capturing the effect of divergence in the response to climate of GGCMs 

relative to observations: 

 Δ� = Σ�����,oopq�+�̅,M�,m�q − +�̅,M�,� y¡y�¢ + Σ�����,oopq�+�̅,M�,m�q − +�̅,M�,� y¡y�¢¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¦¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥§
¨©ª«¬® ¯°«±°²®² (³´µ¶·¸¹º»)

 

 + Σ������,oopq − ����,����¢+�̅,M�,� y¡y� + Σ������,oopq − ����,����¢+�̅,M�,� y¡y�¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¦¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥§
¼®½±°²½® ¯°«±°²®² (³´¾»¿ÀÁÂ¿»)

 (4.4) 

The relative importance of the two components can then be assessed by comparing their distributions 

across locations. 

We address question Q.V by quantifying the changes in yields that result from combining our fitted 

responses with future meteorology under climate warming. We force our log yield response functions � 

with meteorological exposures from HadGEM2-ES simulations for our hindcast period, as well as mid-

21st century (2033-2065) and late century (2067-2099) climates under the RCP 8.5 (Moss et al 2010) 

high-warming scenario. In each epoch the simulated daily temperature and precipitation (	ÃM and 
ÃM) fields 

are binned into the � and [ intervals, respectively, to construct analogues of the weather covariates, +Ä� 

and +Ä�, for current and future years.38 These serve as inputs to eq. (4.2), enabling the resulting weather-

responsive log yields to be used to compute a normalized multi-decadal index of climate impact, given by 

                                                   
38 We assume the same growing season for future climates as for the historical period. 
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the ratio of each location’s average yield under a future climate to its average yield under the present 

climate. Using the expectation operator Å to denote average over the years within each epoch, the index 

is: 

ΨM = Å Çexp Ë� Ì	ÃM
ÍnNnÎ p�MdyN  , 
ÃM

ÍnNnÎ p�MdyN Ï − � Ì	ÃM
pnÎÎ ¡Np�MdyN  , 
ÃM

pnÎÎ ¡Np�MdyN ÏÐÑ                                         (4.5) 

Assuming that the current geographic distribution of harvested areas persists into the future, the projected 

change in the production of each crop due to heat and moisture changes is simply the product of our index 

and the long-run mean crop yield under the current climatic conditions, ΨM × *M
pnÎÎ ¡Np�MdyN  . We stress that ΨM 

will almost surely diverge from the factional change in yields between current and future decades 

simulated by GGCMs. Major reasons are the CFE and climate adaptations assumptions implicitly 

incorporated into GGCMs models, particularly endogenous or unrecorded prescribed future changes in 

fertilizer application rates, crop calendars, or crop genotypes.39 We follow Schlenker and Roberts (2009) 

and restrict attention to counties east of the 100th meridian (excluding Florida) where rainfed cultivation is 

likely to remain concentrated. 

Motivated by the important shortcoming of inter-model comparison exercises in identifying which 

GGCMs’ parameters influence their responses to weather the most; our final exercise addresses Q. VI. 

We undertake a thorough analysis of the GGCMs’ meta-response parameters, identifying the effect of 

each dimension in amplifying or attenuating the differences in GGCMs’ responses. Exploiting the key 

similarities and differences across the six GGCMs (as documented in Rosenzweig et al 2014, Elliott et al 

2014), we first categorize the GGCMs by parameter dimensions40 that likely influence the divergence in 

the inter-model responses. Together with the GGCMs’ and USDA’s estimated coefficient responses, we 

then formulate six different specifications (eqs. 4.6 - 4.11) to carry out robust statistical meta-analyses. 

                                                   
39 For instance, see Rosenzweig et al 2014 SI for details on adaptations accounted for by the GGCMs, and Elliott et 

al 2014 for revised protocols in the next phase of GGCMs' simulations to introduce harmonization in GGCMs' 
simulation runs. 

40 The key GGCMs’ characteristics used as dimension dummies in our analyses are: (i) Type of yield simulated 
(Actual or Potential) (ii) Cultivar adaptation (iii) Heat stress (iv) Dynamic planting window adaptation and (v) Type 
of calibration (See table 2A in Appendix for further details of the GGCMs’ broader characteristics). To account for 
reduced number of observations and loss of degrees of freedom, the parameter dummies (iv) and (v) are omitted in 
eqs. 4.8 and 4.11 (see table 4.1 in Section 3). 
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The dependent variable in eqs. 4.6 and 4.9 is a vector of differences for each of the GGCMs’ and USDA’s 

L�� and L��(from eq. 4.1), thus amounting to 72 observations41. For explanatory variables, in addition to 

the parameter dimensions that are used as a vector of dummies in eq. (4.6), the specification in eq. (4.9) 

also incorporates the interaction of the parameter dummies with the extreme high temperature and low 

precipitation bins, defined by dummies ht and lp, as {25~27.5, 27.5~30, > 30}℃  and {<
5, 5~10} << 9@6⁄  respectively42. 

In contrast to the combined set of  L��and L�� used as a dependent variable in eqs 4.6 and 4.9; eqs. 4.7, 

4.8, 4.10 and 4.11 now restrict the analyses to the individual set of temperature and precipitation 

coefficients. The dependent variable therefore is a vector of differences for each of the GGCMs’ and 

USDA’s L��(eqs. 4.7, 4.10) and L��(eqs. 4.8, 4.11), thus corresponding to 60 and 12 observations (for the 

six GGCMs). 

ΔÔ = Ô�L�� , L��¢oopq −  Ô�L�� , L��¢���� = ÕÖT×T + ÕÖH×H … … … … … … … ÕÖd×d + R             (4.6) 

ΔÔ =  Ô�L��¢oopq     −   Ô�L��¢����         = ÕÖT×T + ÕÖH×H +  … . … … … … ÕÖd×d + R             (4.7) 

ΔÔ =  Ô�L��¢oopq    −  Ô�L��¢����          = ÕÖT×T + ÕÖH×H +  … . … … … . . ÕÖd×d + R              (4.8) 

ΔÔ = Ô�L�� , L��¢oopq − Ô�L�� , L��¢���� = ÕÖT×T + ÕÖH×H + … . ÕÖd×d + ÕÖØ(×T ∗ ×jN) +
                                                                              ÕÖÙ(×H ∗ ×jN)+  . … ÕÖ¡(×d ∗ ×jN) +  ÕÖÚ�×T ∗ ×�Û¢ +
                                                                              ÕÖÜ�×H ∗ ×�Û¢ + … ÕÖ�(×d ∗ ×�Û) + R                    (4.9) 

ΔÔ =  Ô�L��¢oopq − Ô�L��¢����            =    ÕÖT×T + ÕÖH×H +  … . ÕÖd×d + ÕÖT(×T ∗ ×jN) +
                                                                                ÕÖH(×H ∗ ×jN)+  . … ÕÖ¡(×d ∗ ×jN) + R                (4.10) 

ΔÔ =  Ô�L��¢oopq − Ô�L��¢����             =    ÕÖT×T + ÕÖH×H +  … . ÕÖd×d + ÕÖT�×T ∗ ×�Û¢ +
                                                                                 ÕÖH�×H ∗ ×�Û¢ +  … . ÕÖ�(×d ∗ ×�Û) + R               (4.11) 

                                                   
41 13 bins (in eq. 1) x 6 GGCMs = 72 observations. 

42 e = � for the temperature and precipitation bins defined by ht and lp, and e = � otherwise. 
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Of interest in eqs. 4.6 – 4.11 are parameters ÕÖ, coefficients of the broader characteristics of the GGCMs 

that indicate the average impact of the incorporated dimensions (denoted by dummy variable ×)43, on the 

entire pattern of GGCM’s crop yield response.  

The first three sets of specifications (eqs. 4.6 – 4.8) enable us to examine the influence on the parameter 

dimensions averaged across all temperature and precipitation bins. In contrast,   eqs. (4.9 – 4.11) enable 

us to attribute the key parameters that influence the divergence in GGCMs’ responses to the extreme bins 

(as defined above), where one can anticipate the largest variation across the GGCMs.  

4.3 Results  

4.3.1 Differences between GGCM simulated and historically observed yield anomalies 

Figure 4.1 tabulates the distributions of the differences in percentage yield anomalies between GGCMs 

and USDA records for our three crops over the 1972-2004 period. The wide support of the distribution 

suggests that the ISIMIP-FT GGCMs struggle to reproduce the PDF of yield anomalies generated by a 

real-world agricultural system. For the half of our county sample lying within the interquartile range the 

model-observation divergence is on order of -/+30%, while in the majority of remaining locations 

simulated yields can dramatically overstate or understate the observations. 

While this pattern persists across crops, GGCMs’ performance—as judged by the variance of the 

distributions—tends to be generally better for wheat and especially maize compared to soybeans, which 

exhibits much larger dispersion. The modes of the individual annual cross-county PDFs (shown in light 

colors) also shift substantially from one harvest to another, but these positive and negative fluctuations do 

not follow a predictable temporal sequence that might suggest systematic bias. The marked differences 

across models and crops in the annual and aggregate PDFs also suggest that no single GGCM has a clear 

advantage in modeling all crops. Rather, an individual GGCM may exhibit skill in modeling yields of one 

crop versus another (e.g., wheat relative to soybeans simulated by LPJmL), while for any given crop some 

GGCMs outperform others (e.g., maize simulated by GAEZ-IMAGE relative to GEPIC). 

 

 

                                                   
43 e = � when the parameters (in table S#) are implemented in the GGCMs, and e = � otherwise. 
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Figure 4.1. Cross-county distribution of the GGCM - USDA difference in percentage yield anomalies. Anomalies 
are calculated as the % deviation of every county’s yield from its own 1972-2004 mean (eq. 4.1). Light lines show 
the annual distribution of county differences between each model and observations. Heavy lines show the 
distribution across counties and years. 
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4.3.2 Correlations between yield anomalies and extreme temperature and precipitation  

While GGCMs’ ability to reproduce observed yields has been comprehensively analyzed, with a focus on 

establishing a global-scale benchmark for valid comparisons (Müller et al 2016 under review), we argue 

that where such benchmarks are available (such as at sub-national scales within the U.S.), the critical 

focus of evaluation should be models’ skill in reproducing the response of yields to climatic forcings 

observed in real-world agricultural systems. In this regard, our preliminary indicator is the historical 

correlations between annual yield anomalies and extreme high temperatures and low precipitation, 

respectively, for both GGCMs and observations. 

Figure 4.2 visualizes the map of the correlations between yields and annual growing season exposures to 

the extreme high temperature and extreme low precipitation bins (respectively) as a bivariate density, 

providing a first glimpse into the origins of the divergence between GGCM-simulated and observed 

yields. Not surprisingly, both correlations are negative in 50-75% of counties, however the magnitudes of 

the correlations differ both across models and among crops. Yields are more strongly correlated with 

adverse weather exposures for maize and soybeans than for wheat, which exhibits a pattern of equivocal 

response in both the observations and the simulations (except for LPJ-GUESS and pDSSAT). However, 

with the exception of GAEZ-IMAGE, simulated maize and soybean responses exhibit excess weather 

sensitivity compared to observations, with GEPIC, LPJ-GUESS, LPJmL and pDSSAT showing tight 

clustering of negative impacts across counties. This may be due to differences between modeled and 

observed management practices, length and number of the growing seasons, and adaptation strategies.  

The strength of the association between heat and moisture impacts is indicated by the best-fit line, which 

is generally more steeply sloped for GGCMs than for the observations, point to models’ comparatively 

higher sensitivity to low precipitation exposures. Wheat appears to be less sensitive to both heat and low 

moisture, which could be attributed to multiple cropping seasons (see Müller et al 2016 under review for 

similar discussions). 
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Figure 4.2. Correlations between % yield anomalies and extreme high temperature exposures ('#((( *∗ , +ÝÞ�°¨� ), 

horizontal axis) and extreme low precipitation exposures ('#((( *∗ , +ßÙ ««� ), vertical axis) for six GGCMs and 
observations. Dashed red lines are the linear fit indicating the cross-county pattern of association between 
temperature and precipitation exposure correlations. 
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4.3.3 Empirical modeling of simulated and observed yield responses to weather  

The foregoing comparisons leave uncontrolled a wide variety of factors that might reasonably be 

anticipated to affect yield. One is management practices, whose variation across sub-national locations 

and years is not recorded (or made readily available), either by USDA or as part of the ISIMIP-FT 

exercise. Another is non-extreme weather: negative yield impacts of more frequent extreme low moisture 

and/or high heat days could conceivably be offset by near-optimal growing conditions throughout the 

remainder of the growing season. Conversely, yields might well be lower in counties and years that 

experience fewer extreme adverse days, but more frequent non-extreme but nonetheless sub-optimal 

weather. 

The advantage of the econometric model in eq. (4.1) is its ability to account for both sets of factors, 

transparently partitioning the variance in simulated and observed yields between idiosyncratic influences 

potentially associated with unobserved shifts in management, and the mean deterministic effects of the 

full range of heat and moisture conditions experienced by crops. The latter are shown in figure 4.3 as 

piecewise linear splines that trace out the responses of log yield to ranges of temperature and 

precipitation. The empirical models are precisely estimated, with the covariates explaining 75% of the 

cross-section/time-series yield variation on average (table 3C in Appendix C), but weather responses 

accounting for between 0-51% (table 4C). Estimates derived from both the GGCM and observational 

datasets are qualitatively consistent with empirical evidence on the critical negative effects of extreme 

heat (cf. Schlenker and Roberts 2009, Tack et al 2015). Aside from GEPIC maize and pDSSAT soybean 

simulations, these effects are understated by the corresponding responses to low moisture, also a feature 

of empirical findings. But there is considerable heterogeneity in crop models’ responses to both extreme 

and non-extreme weather, and, compared to the observational benchmark (panels D-F and J-L) GGCMs 

overstate crops’ sensitivity (cf. Figure 4.3).  
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Figure 4.3. Log yield impacts of temperature and precipitation exposures for maize, wheat and soybeans, mean 
responses (solid lines) and confidence intervals (shaded areas). Responses are normalized relative to the number of 
days with temperatures 22.5-25°C and precipitation 10-15 mm, represented by the heavy horizontal axis. Standard 
errors are robust to heteroscedasticity, and temporal and spatial autocorrelation. 
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In the observational dataset, exposure to an additional day >30°C reduces annual maize and soybean 

yields by 1% but generates wheat yield losses one-tenth as large. The corresponding GGCM responses are 

more elastic, between 0.2-3% for maize, 0.5-3.6% for soybeans, and 0.1-2% for wheat. Exposure to an 

additional day with precipitation <5 mm reduces maize and soybean yields by about 0.25% in the 

observational dataset. Here too, GGCMs exhibit larger losses across all crops, between 0 and 4.5% (1.9% 

at the multi-model mean). Even so, no GGCM exhibits consistent positive or negative biases relative to 

the observational response. 

4.3.4 Decomposing the divergence between GGCM- and observationally-calibrated yield responses 

The foregoing divergence may result from several influences. One potential culprit is omitted variable 

bias, particularly the contaminating effects on L�� and L�� of management practices that are correlated 

with weather and unrecorded in the observational dataset, but omitted from GGCM simulations. A second 

is simply differences between the aggregate responses to weather shocks implied by process models’ 

internal representation of crop growth and the responses of real-world agricultural systems. A third is 

differences in the exposures implied by GLDAS for the observations as opposed to HadGEM2-ES for the 

GGCMs. Although omitted variable bias is not something we can address, we can establish the 

importance of the first and second influences relative to the third by decomposing the difference between 

GGCM and USDA yield responses into climatic uncertainty and response uncertainty, using eq. (4.4). 

Figure 4.4 show the results of this calculation. 
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Figure 4.4. Decomposition of predicted weather component of GGCM yield - predicted weather component yield of 
observed yield for 950 counties showing the total difference (black dots), climate component (dark bars), and 
response component (light bars). 
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The horizontal axis rank-orders counties from the largest negative to the largest positive values of the 

difference between the weather-responsive portion of each GGCM’s historical run and the observations, 

Δ�. The magnitude of this divergence is measured on the vertical axis and indicated by black dots. 

Corresponding to these, for each county a light-colored bar indicates the response component 

(Δ�� xÛà¡x ), while a dark-colored bar identifies the climate component (Δ�p�MdyN ). The majority of 

GGCM-crop combinations show patterns of total divergence that mirror the cross-county trend in 

Δ�� xÛà¡x , with  Δ�p�MdyN mostly adding noise. This suggests that the differences in the splines in 

Figure 4.3 are mostly attributable to GGCMs’ internal responses, not differences in meteorological 

inputs.44 

4.3.5 Future U.S. crop yields under climate change 

Using eq. (4.5) to quantify the implications of our estimated response functions for the impacts of climate 

change on yields generates patterns of changes summarized in figure 4.5. Differences in GGCMs’ 

responses in figure 4.3 translate into starkly contrasting projection of yield change. The response 

functions for models such as GEPIC that exhibit strong negative correlations between yields and high 

temperature or low precipitation predict losses of more than 75%, while those for GAEZ-IMAGE 

counterintuitively predicts yield gains.  

We emphasize that our projection methodology is based solely on weather impacts, and does not attempt 

to account for the potentially beneficial offsetting effects of either the CFE, exogenous future adaptations 

or the endogenous adjustments (e.g. changes in cultivars and growing seasons) simulated by models like 

LPJ-GUESS and LPJmL. By comparison, the adverse impacts projected by our less elastic 

observationally calibrated model are substantially attenuated, especially for wheat that suffers negligible 

damages for both future epochs.  

                                                   
44 The reverse is true for PEGASUS maize and soybeans simulations. In the LPJmL wheat simulation the climate 
component dominates for Δ� > 0 while the response component dominates for Δ� < 0. Weather appears to play a 
negligible role in GAEZ-IMAGE simulations, with Δ� almost entirely driven by the estimated crop response. 
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Figure 4.5.  Projected % changes in crop yields for two future periods under an RCP 8.5 warming scenario 
simulated by HadGEM2-ES (see figure 2C in Appendix C for changes in exposure of future temperature and 
precipitation simulated by HadGEM2-ES under RCP 8.5, relative to the historical period). 
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4.3.6. What drives the divergences in GGCMs’ crop yield responses to weather? 

We finally examine what drives the divergence in results across GGCMs. In particular, the divergence of 

the estimated crop yield responses to temperature and precipitation (figures  4.2 and 4.3), not only across 

the six GGCMs, but also between the GGCMs and the empirical specification of USDA. As emphasized 

in literature (e.g. Rosenzweig et al 2014, Elliott et al 2015, Müller et al 2016), understanding these 

drivers of model responses are of paramount importance, and yet seldom systematically initiated (see 

Nelson et al 2014 and Bassu et al 2014).  

Table 4.1 summarizes the results of the statistical meta-analysis (eqs. 4.6 – 4.11) for crop maize (See 

results in tables 5C for wheat and soybeans).  
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Table 4.1: Regression summary of meta-analysis for crop maize. The six model specifications denoted by (4.6 – 
4.11) in the table correspond to the specifications represented by eqs. (4.6 – 4.11) respectively. Robust standard 
errors (S.E.) are reported in parenthesis.  

Dependent variable: Difference in Estimated Coefficients (GGCMs – USDA) as defined in eqs.(6-11) 

 (4.6) (4.7) (4.8) (4.9) (4.10) (4.11) 

Potential Yield -0.007 -0.012 0.007 -0.025*** -0.031*** -0.001 

 
(0.007) (0.009) (0.005) (0.005) (0.004) (0.002) 

Change in Cultivar 0.011 0.017* -0.006 0.032*** 0.039*** 0.002 

 
(0.008) (0.009) (0.005) (0.006) (0.005) (0.001) 

Dyn. planting Window -0.002 -0.003 
 

-0.008*** -0.008*** 
 

 
(0.002) (0.002) 

 
(0.002) (0.002) 

 

Heat stress -0.018** -0.025** 0.006 -0.037*** -0.044*** -0.009*** 

 
(0.008) (0.010) (0.006) (0.007) (0.007) (0.000) 

GGCM Calibration (Site) 0.001 0.001 
 

0.003*** 0.001 
 

 
(0.001) (0.002) 

 
(0.001) (0.002) 

 
       

I(hi_t * Pot_Yield)    
0.051*** 0.063*** 

 

    
(0.007) (0.006) 

 

I(hi_t * Cultivar)    
-0.061*** -0.074*** 

 

    
(0.007) (0.006) 

 

I(hi_t * Plant_window_Dyn)    
0.019*** 0.019*** 

 

    
(0.003) (0.003) 

 

I(hi_t * H_stress)    
0.049*** 0.062*** 

 

    
(0.008) (0.007) 

 

I(hi_t * Calib_Site)    
-0.009*** 

  

    
(0.002) 

  

I(lo_p * Pot_Yield)    
0.037*** 

 
0.013* 

    
(0.008) 

 
(0.007) 

I(lo_p * Cultivar)    
-0.045*** 

 
-0.012* 

    
(0.008) 

 
(0.006) 

I(lo_p * Plant_window_Dyn)    
0.013*** 

  

    
(0.003) 

  

I(lo_p * H_stress)    0.048***  0.023*** 

    
(0.009) 

 
(0.006) 

I(lo_p * Calib_Site)    
-0.006*** 

  

    
(0.002) 

  

Adjusted F Statistic and 4.289*** 4.885*** 1.553 42.577*** 24.052*** 2.325* 

Degress of Freedom (df = 4;77) (df = 4;59) (df = 2;17) (df = 14;77) (df = 8;59) (df = 5;17) 

Observations 78 60 18 78 60 18 

Adjusted R2 0.107 0.186 0.031 0.604 0.679 0.238 

Residual Std. Error 0.013 (df = 73) 0.014 (df = 55) 0.006 (df = 15) 0.009 (df = 63) 0.009 (df = 51) 0.005 (df = 12) 

 
Note: *p<0.1; **p<0.05; ***p<0.01 
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A few features become immediately apparent by focusing on the significant (> < 0.05) coefficient 

estimates of the broad GGCM characteristics (table 4.1). The specifications (4.8) and (4.11) are largely 

insignificant, given the small sample size of precipitation bins used in our regression specification (eq. 

4.1). In specifications (4.7 and 4.10), the treatment of heat stress45 parameter induces a negative and 

significant bias in the temperature coefficients, relative to the USDA estimated coefficients. However, 

this effect is completely offset in the high-temperature and low-precipitation bins (interaction terms in 

models 4.9 – 4.10, table 4.1).  

 

The second important significant and prominent characteristic is cultivar adaptation, which (expectedly) 

has the opposite effect to heat stress. Switching over to high yield cultivars (climate adaptation) should 

potentially offset the negative yield losses under warming climate; but once again, this effect is offset in 

the extreme temperature and precipitation bins. Other broader characteristics such as dynamical changes 

in planting window and type of GGCM calibration, have limited significant effect on the divergence in 

responses of GGCMs’ yields to weather variables relative to USDA empirical responses.  

The results in table 4.1 are largely consistent for soybeans, but to a lesser extent for wheat (see table 5C in 

Appendix C). While understanding the underlying differences in treatment effects induced by the same 

parameters across the three crops is beyond the scope of this paper, a likely reason for the disparity could 

emanate from the marginal heterogeneity in the GGCMs’ inter-crop simulation setups. To summarize, our 

novel approach in identifying the potential drivers of divergence in responses could prove even more 

beneficial when a broader suite of GGCMs are incorporated in inter-comparison exercises (such as in ISI-

MIP246 and Global Gridded Crop Model Intercomparison (Elliott et al 2014)). 

 

4.4 Discussion and Conclusions 

This paper presents a head-to head comparison of process-based and econometric models that are 

commonly utilized to examine climate change impacts on crop yields. We compare GGCMs’ internal 

representations of crop growth with the responses of yields to heat and moisture variation under the 

current climate as estimated by econometric models trained on observations. Our focus is on rainfed 

yields of maize, wheat and soybeans in the U.S. counties. 

Although when comparing with observations, we can expect a given GGCM not to be able to exactly 

reproduce the level of yield in a particular year and county, even across all counties that produce a given 
                                                   
45 Among the six GGCMs used in our study, only PEGASUS explicitly accounts for heat-stress in ISIMIP-FT 
simulations (see table 2A in Appendix A for broader GGCMs’ characteristics) 
46 See ISI-MIP2 protocol, www.isi-mip.org 
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crop, under a range of climatic conditions, the GGCMs examined in this paper have difficulties at 

approximating the PDF of percentage yield anomalies, defined as the deviation of GGCM’s annual 

county yields from its own 1972-2004 mean. Our analysis shows that the main driver of this difference is 

the diversity in estimated crop response function, whereas uncertainty in the different sources of climate 

inputs plays a secondary role.  

The empirical estimates of crop yield responses to temperature and precipitation indicate that GGCMs 

generally overstate crops’ sensitivity to both meteorological variables. This result could reflect 

unmeasured farmer adaptations that influence the response functions estimated using the econometric 

model but that are absent from the crop models. However, we take a step further by asking an important 

question as to what drives the divergence in responses across the GGCMs, and between the GGCMs and 

the empirical estimates. Our statistical meta-analysis is able to attribute the average impact on the entire 

pattern of GGCMs’ response to a few key model simulation parameters. For instance, we establish that 

the treatment of heat stress in PEGASUS induces a negative and significant average bias in the 

temperature coefficients relative to the USDA coefficient estimates. This largely explains the earlier 

documented hypothesis of PEGASUS’s generally pessimistic predictions in future crop yields (see 

Rosenzweig et al 2014, Müller et al 2015). Our contribution should therefore further facilitate 

benchmarking of results in inter-model comparison exercises (such as being addressed by Müller et al 

2016); but more importantly, by taking a critical step further in elucidating the underlying GGCMs’ 

characteristics responsible for the divergence in their crop yield responses. 

It must be acknowledged though that the GGCMs’ simulations from ISIMIP-FT exercise are at global 

domain and are not optimized for U.S. counties. Care should therefore be exercised in interpreting the 

results outside the context of this study. Moreover, it is envisaged that the next phase of model inter-

comparison exercises (e.g. ISI-MIP247, Global Gridded Crop Model Intercomparison (Elliott et al 2014)) 

would include systematic harmonization of GGCMs in their simulation setup. A similar broad scale inter-

model exercise as done by us could throw more insight on the underlying reasons for divergence in 

GGCMs’ performance, and potentially set precedence of benchmarks in modeling exercises. 

Closing remarks 

The following chapter systematically summarizes the results covered in the thesis. The caveats associated 

with the overall study, and scope for future research are also highlighted.  

 
                                                   
47 See ISI-MIP2 protocol, www.isi-mip.org 
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Chapter 5: Conclusion 

Preface 

In spite of rapid strides in technology in agriculture sector (e.g. Green revolution48), crop productivity in 

both developed and developing countries is largely influenced by weather variables, notably temperature 

and precipitation (Lobell et al 2011, Porter et al 2014).  A primary reason for the persistent pressure faced 

by agriculture due to weather elements stem from the fact that crop yields are more vulnerable to the 

variability in regional climate patterns, rather than the changes in the mean regional or global climate 

(Hatfield et al 2011). To understand the implications of future changes in the mean and variability of 

climate on food production and economy, at both regional and global scales; the research community and 

policy makers employ a large array of modelling tools, such as process based or mechanistic crop models, 

IAMs and computable general equilibrium models (CGEs).  

Empirical approaches have been increasingly applied in impact studies across various domains, such as 

Energy (e.g. De Cian et al 2013),  Health (e.g. Egbendewe-Mondzozo et al 2011), and most notably 

Agriculture (e.g. Lobell and Field 2007, Schlenker and Roberts 2009 and Greenstone 2012). Its reliance 

on computationally less demanding resources makes it an attractive tool in inter-sectorial impact studies 

(Lobell and Burke 2010). In addition, its simple rapid integration with other models (such as ESM, IAM) 

makes it a very attractive tool to supplement complex and computationally demanding mathematical 

models. It is only natural that utilizing the strengths of an appropriate econometric approach (within the 

boundaries of its limitations) in agronomic studies, could have far reaching applications in supplementing 

process based crop models’ simulations of future crop yields.  

Recent work by Oyebamiji et al (2015) and Blanc and Sultan (2015) have built a generic framework for 

the construction of crop-model emulators, albeit with certain limitations such as the former employing 

only one GGCM (LPJmL), and the latter on only one crop (maize)49. Moreover, their work not only 

utilizes a large number of climate and non-climatic predictor variables, but also comes with certain 

constraints in the practical application that are inherently bound to the methodology used in their 

respective calibrations.  

                                                   
48 Largely attributed to the eminent American scientist Norman Borlaug, “Green Revolution” refers to the rapid 
advancements in agricultural technology and practices that led to a rapid rise in global food production beginning 
early 1960s. Technological advances include but are not limited to, improved crop varieties, better fertilizer 
applications and management practices, genetically modified organisms, irrigation infrastructures etc. 

49 At the time of writing this thesis, Blanc (2016) expands the work of Blanc and Sultan (2015) to include wheat, 
soybeans and rice in building a statistical emulator. However, notable key differences between these works and the 
work undertaken in this thesis remain. 
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Putting simplicity, flexibility and above all robustness in the forefront, this thesis has investigated the 

suitability and application of a statistical emulator for estimating impacts of climate change on 

agriculture, at varying spatial and temporal scales, under different future climate scenarios (RCPs 4.5 and 

8.5). Such a simple, robust and flexible reduced form statistical response function to emulate crop yields 

could provide useful information to policy makers on both the impacts (social and economic costs), as 

well as the pressures on adaptation in the coming years. Moreover, it is envisaged that such an approach 

would help to perform sensitivity analyses in order to further understand the compounding driving factors 

responsible for changes in global crop yields.  

This chapter summarizes the key results of the thesis and how they address the overall objectives laid 

down in the introductory chapter (Chapter 1). I discuss some caveats associated with the data and 

methodology, providing suggestions for interpreting the results with caution. Finally, I provide 

suggestions for future research, with a broader goal of adding further value-added tools for policy and 

decision making. 

5.1 Overview of results 

5.1.1 Chapter 2 

Together Chapters 2 and 3 broadly address the research questions 1-3 outlined in the objectives (Section 

1.2) of Introduction. Chapter 2 began by introducing the framework of recent global inter-model, inter-

comparison exercises focusing on the impacts of climate change on crop yields (namely AgMIP and ISI-

MIP). The cumbersome model realizations implemented by such exercises under varying simulation 

setups provide an understanding of the model uncertainties in the future projections of changes in crop 

yields, as well as much needed data for calibration in empirical studies. Baring a few exceptions50, 

historical observed global crop yield data are neither easily nor reliably available, specifically at a fine 

scale (gridded or district/county) spatial resolution over a significant temporal dimension fit for statistical 

analyses. Under such limitations, employing data from the output of process based GGCMs simulations is 

one logical alternative (Lobell and Burke 2010).  

The PMA framework, on which the emulators are constructed, was discussed in detail highlighting the 

potential advantages as well as the pitfalls of the methodology, and the need to interpret the results with 

an element of caution. For instance, as Lobell and Burke (2010) emphasize, the biggest advantage in 

using a PMA is that the “true” response to climate change can be calculated, synonymous to laboratory 

                                                   
50 A few notable exceptions include the historical observed crop yield data over India at district level , and for U.S. 
counties, and the recent global scale contributions of (Ray et al 2012, Iizumi et al 2014)  
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(modeling world) control experiments (runs). In contrast, when using actual historical observed data for 

calibrating a statistical model, the future responses are unknown. Naturally, using data for 

calibration/validation from only one source (such as a single crop model and/or crop, as done by the 

above mentioned earlier studies focusing on emulators), could make the results conditional to the choice 

of the crop/model.  A key take away message of this chapter has thus been to apply the PMA to a broad 

array of crops and models that represent many processes influencing yields. Moreover, apart from the 

option to use the projections of individual emulators as an ensemble of six emulators, the development of 

a multi-GGCM emulator (not attempted in earlier studies) provides a tool for rapid amalgamation of 

heterogeneous GGCMs, thus having a potential to better quantify the uncertainty of climate impacts on 

crop yields. 

Focusing on the key results, barring a few exceptions, the responses (coefficient estimates) of GGCMs’ 

yields to / and 3 bins, exhibit similar characteristic shape (such as the mid-range / ideal for most crops’ 

growth process and lower/higher thresholds having detrimental impact on yields), in line with earlier 

works of Schlenker and Roberts (2009), Lobell et al (2012) and Blanc and Sultan (2015). The results of 

the in-sample and out-of-sample validations under both RCPs 4.5 and 8.5 show the emulators have low 

relative bias (RB) across grid-cells with a higher share of global crop production. Given the heterogeneity 

across the GGCMs, their simulation setups, and most importantly dynamic adaptation in some of them 

(e.g. LPJ-GUESS and PEGASUS), the contrasting results across the six GGCM emulators are expected. 

Yet the multi-GGCM emulator shows encouraging results by replicating the broad behavior of the 

underlying six GGCMs on which it was trained.      

Further, by incorporating a trend interaction regression specification on three of the GGCMs, I illustrate 

the contribution of adaptation (implicit to GGCMs), in moderating yield shocks over the two future 

epochs (2030~2064 and 2065~2099) under RCP 8.5. The findings are crucial to agronomic studies since 

the inability to correctly account for adaptation in future yield responses are often considered short-

comings of statistical methods (Lobell et al 2011). Moreover, the outputs of model inter-comparison 

exercises typically record only a subset of the endogenously-varying internal processes of their 

constituent models.  Not controlling for the potential confounding impacts of adaptation can therefore 

inadvertently lead to double counting of shocks in IAMs/CGEs.  

The chapter also examines sensitivity of regression parameters and specifications, a key necessity in any 

empirical study. Additionally, by focusing on different validation periods under contrasting future climate 

scenarios, I provide a preliminary robustness check of the estimation methodology. The findings (that of 

overall better performance of emulators in the mid-century validation period, compared to the end-
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century) intuitively supports the known hypothesis that statistical models tend to perform better when the 

variability in the mean climate is similar in the training and forecast periods (Lobell and Burke 2010), as 

evident from the climate projections made for the two epochs by HadGEM2-ES.  

Moving on to potential caveats, notwithstanding the encouraging results from the most basic emulator of 

the heat and moisture effects of climate change, it is worth reiterating that further detailed analyses of 

model specifications could lead to refinements in the fitted model. For instance, the lack of soil-moisture 

data (in ISIMIP-FT) often considered a key parameter in determining water balance and water 

requirements during crop growth processes, would have proven beneficial in replicating the responses of 

GGCMs’ crop yields better. Albeit another variable (Vapor Pressure Deficit, C3D) was used as a proxy 

(in Chapter 3), the inclusion of soil-moisture as a predictor variable could have improved the overall 

model fit. Moreover, omitting key control variables in empirical estimates could incorrectly attribute 

responses to predictor variables included in regression specification.  

Another potential caveat in this study has been the omission of a different set of climate variables, as 

addressed by Oyebamiji et al (2015) and Blanc and Sultan (2015). Utilizing data from GGCMs driven by 

only one global climate model (GCM) (HadGEM2-ES in this study), along with the weather variables 

from the same GCM used for calibration and validation, could potentially restrict the span of the likely 

climate input space. Again, constrained by data availability, the ISIMIP-FT data used in this study has 

been restricted to HadGEM2-ES as the input climate model51. It may also be noted though that 

realizations of climate variables from GCMs are not necessarily a true climate input space, but more of 

climate model space (Oyebamiji et al 2015). Moreover, as later demonstrated in Chapter 4, the 

contribution of input climate variables from different sources have marginal effect in driving the 

divergence in results across the GGCMs.  

The lack of detailed model documentation concerning the assumptions of adaptation and management 

practices used by the GGCMs, has been a major impediment52 in capturing the adaptive capacity of 

GGCMs in their future period simulations.  It is envisaged that ISI-MIP2 would not only have better 

harmonization across GGCM simulations, but also detailed documentation of the same, thus improving 

                                                   
51 It must be noted that although Blanc and Sultan (2015) also utilized ISIMIP-FT data in their study, their focus on 
only crop maize enabled them to employ data from other GCMs. For the rest of the crops (wheat, rice and soybeans) 
not used in their study and which are used in this thesis, data from only GCM HadGEM2-ES is available in the 
simulation runs. Oyebamiji et al (2015) on the other hand had the luxury to recalibrate their process based model 
(LPJmL) using different input climate forcings. Needless to say, their empirical specifications allowed them to use 
the same multiple GCMs. 

52 Although Chapter 4 investigates the cofounding divergence in GGCMs’ yield responses, a further detailed 
documentation of GGCMs’ simulation parameters could facilitate a more thorough analysis.  
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the bias and precision of the statistical estimates. Lastly, although data from irrigation regime was 

available, the thesis did not attempt to focus on building an emulator suitable for the same. This partly 

stems from the core research questions outlined in the introductory chapter, emphasizing the need to build 

a tool capable of highlighting the pressures on adaptation on future crop yields. Nevertheless, utilizing 

data from irrigated regime is highly recommended as work for future. 

5.1.2 Chapter 3 

The chapter is an extension to the work done in the previous chapter (Chapter 2). In line with practices in 

empirical studies, a series of robustness analyses of the methodology used in fitting the regression 

models, as well as explicitly accounting for spatial dependence in model data were investigated. I begin 

by revisiting the base (regression) specification of Chapter 2, using an additional predictor variable 

(C3D). Although there were no noticeable improvements in the overall results over the base specification 

involving only / and 3; C3D is an important variable for understanding soil-crop-atmosphere continuum. 

In fact, to broadly encompass the feedback mechanisms of /, 3 and C3D, as well as to eliminate any 

potential multicollinearity on including additional predictor variables, exploring a composite variable -

such as Standardized Precipitation-Evapotranspiration Index (á3hâ)53 (Vicente-Serrano et al 2010)-  as a 

standalone predictor variable is highly recommended for future work. Such an approach could not only 

reap beneficial results (better model fit and agreement with the GGCMs’ future crop yields predictions), 

but also obviate the need to depend on variables that are not reported by the outputs of GCMs/GGCMs 

(such as soil moisture, evapotranspiration etc. in ISIMIP-FT). 

The AEZ specification that explored the potential geographic heterogeneity in the slopes (coefficients), 

did not improve the results over the base specification, in line with Blanc and Sultan (2015). Although a 

further detailed analyses to understand the potential reasons were not attempted, part of this outcome 

could be attributed to the data used in this study. Recalling that the data for calibration and validation 

comes from GGCMs of ISIMIP-FT wherein the modelling groups were permitted to use their 

best/existing setups for simulation runs; it is conceivable that the crop modelers themselves did not have 

the responses of crop yields to weather and soil parameters stratified by geographic sub-regions in their 

control runs. Another potential reason for the poor results emanating from this specification stems from 

the reduced sample size (observations) of the six AEZ groups. This could have hampered both the 

precision and the bias of the estimated coefficients. 

                                                   
53 á3hâ is a relatively new drought index, based on the earlier Standardized Precipitation Index (á3â). The index 
accounts for the effect of / on drought development through a simplified water balance computation.  
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The third and final regression model (Spatial lag of ã, SLX) emanates from the family of spatial panel 

models (SPM). Apart from a few earlier studies (e.g. Cai et al 2012) that have applied spatial econometric 

methods in agriculture on a much smaller regional scale, the application of a SPM on a fine scale global 

gridded agricultural study is the first of its kind in this thesis. The potential pitfalls of ignoring spatial 

dependences in dependent and/or independent variables were highlighted in this chapter, and the results 

of such non-spatial techniques even though accounting for spatial correlation in the error terms were also 

recommended to be used with caution. Although the SLX specification (and in general, all of the SPMs) 

requires the construction of a spatial weight matrix (�), the improvement in overall results compared to 

the non-spatial specification clearly suggests the added exercise is worth the effort. It is also important to 

highlight potential scope of improvements when applying SPMs. The SPMs54 used in this study are not 

only static, but also not geographically weighted (i.e. the coefficient estimates do not vary by grid-cells; 

unlike for e.g. Cai et al 2012). Using dynamic and/or geographically weighted spatial models becomes 

challenging to interpret and apply at a global gridded scale; and is left as scope for future work. 

5.1.3 Chapter 4 

Shifting focus from global to regional domain, as well as initiating an inter-comparison of results between 

statistical models trained on GGCMs’ and historical observed data, Chapter 4 laid an important 

foundation on contributing work to model inter-comparison exercises. The work in this Chapter addresses 

the remaining questions (4 and 5) raised in the objectives of the introductory chapter.  

For this, I focus on U.S. counties, utilizing observed (USDA) and modeled (ISIMIP-FT GGCMs) data. I 

undertake a head-to head comparison of process-based and econometric models that are commonly 

utilized to examine climate change impacts on crop yields. My results reveal that across all U.S. counties 

that produce a given crop under a range of climatic conditions, the GGCMs examined failed to replicate 

the PDF of % yield anomalies, defined as the deviation of GGCMs’ annual county yields from its own 

1972-2004 mean. Whereas uncertainty in the different sources of climate inputs does play a marginal role, 

the key driver of the heterogeneous results across GGCMs is the diversity in estimated crop response 

function. Perhaps the biggest contribution of the chapter to inter-model comparison exercises is the 

outcome of the meta-parameter analyses. The results show two key drivers of divergence in GGCMs’ 

yield responses, namely heat-stress and cultivar adaptation. As with every empirical study, the 

interpretation of results outside the focus of study area and climate scenario need not be applicable. The 

GGCMs from ISIMIP-FT are certainly not optimized for U.S. crop growing regions. The subsequent 

                                                   
54 Apart from SLX, other SPMs investigated include the Spatial Error Model (SEM) and the Spatial Durbin Error 
Model (SDEM). Results were not reported in Chapter 3 due to close agreement with those of SLX 



67 
 

implications of the projected changes in GGCMs’ yields under future climate scenarios should therefore 

be taken with an element of caution. 

5.2 Concluding discussion 

 

In comparison to the current literature on agro-econometric and climate impacts, the main innovations of 

the thesis lie in the following five key elements:  

 

(i) The use of very large and heterogeneous multi-GGCM panel data as a calibration dataset for 

empirical model.  

(ii) The use of a parsimonious and flexible econometric specification.  

(iii) The tenacity to account for additional covariates (such as VPD) not previously applied in 

empirical estimates, and more importantly, to explicitly account for spatial dependence and 

correlation in model specifications.  

(iv) The use of both observed and modeled data for U.S. counties, to do a head-to-head comparison of 

processed based vs. econometric models.  

(v) Finally, by attributing the average impact on the entire pattern of GGCMs’ response to a few key 

model simulation parameters, the thesis provides a first insight as to why the GGCMs vary in 

projections of future yield changes. 

 

The construction of a multi-crop, multi-GGCM emulator required detailed understanding of crop growth 

processes, key parameters and variables; and a detailed investigation of available sources of agriculture 

and climatological datasets. The exercise at a fine scale global gridded resolution comes with its own 

confounding dynamic responses of crop yields to climate.  Constructed independently on six different 

GGCMs as well as on a combined multi-model panel of six GGCMs; my simple, flexible and robust 

emulator can have wide-ranging applications in studies assessing impacts of climate change on yields of 

four important crops. It is envisaged that the work done in this thesis would lay a further empirical 

roadmap, towards building a tool capable of replicating yield responses for wider variety of crops and 

heterogeneous crop models, predominantly with regional impetus.        
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Appendix A: Supplementary material for Chapter 2 

1. Global Gridded Crop Models (GGCMs) used in this study along with the contact details of 

the modelling groups  

(i) Geographic Information System (GIS)-based Environmental Policy Integrated Climate 

(GEPIC) (Liu et al 2007) 

(ii) Global Agro-Ecological Zone model in the Integrated Model to Assess the Global 

Environment (GAEZ-IMAGE) (Van Vuuren et al 2006) 

(iii) Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) (Bondeau et al 2007) 

(iv) Lund Potsdam-Jena managed Land (LPJmL) (Bondeau et al 2007, Sitch et al 2003) 

(v) parallel Decision Support System for Agro-technology Transfer (pDSSAT) (Elliott et al 

2013, Jones et al 2003) 

(vi) Predicting Ecosystem Goods And Services Using Scenarios (PEGASUS) (Deryng et al 2011) 

Table 1A.  GGCMs used in this study, with the home institution and contact details. 

Model Institution Contact Person/Web address 

GEPIC EAWAG (Switzerland) 

Christian Folberth/Hong 

Yang  

christian.folberth@eawag.ch 

hong.yang@eawag.ch  

GAEZ-IMAGE 
Netherland Environmental Assessment Agency, PBL 

(Netherland)  

 

Elke Stehfest/Kathleen 

Neumann  

elke.stehfest@pbl.nl  

kathleen.neumann@pbl.nl  

LPJ-GUESS 
Lund University (Sweden), 

IMK-IFU, Karlsruhe Institute of Technology (Germany)  

Stefan Olin/Thomas Pugh  

stefan.olin@nateko.lu.se  

thomas.pugh@imk.fzk.de  

LPJmL PIK (Germany) 

Christoph Muller 
christoph.mueller@pik-

potsdam.de  

pDSSAT University of Chicago (USA) 
Joshua Elliott,  

jelliott@ci.uchicago.edu  

PEGASUS Tyndall Centre, University of East Anglia (UK) 
Delphine Deryng  

d.deryng@uea.ac.uk  
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55 For pDSSAT, cultivar choice, fertilizer application etc. are fixed by the historical average of all future years 
56 Dynamic: Automatic adjustments of planting and harvesting dates due to annual weather conditions; an internal model process. 
57 Fixed: planting windows are determined using historical values based on literature. LPJ-GUESS allows planting dates adaptation within +/-15 days of calculated optimum 
values, but planting window is fixed. 
58 GGCMs without N stress (GAEZ-IMAGE, LPJ-GUESS, LPJmL) tend to be more optimistic in yield response, ceteris paribus.  
59 RUE: Radiation Used Efficiency. Leaf: Leaf-level photosynethesis. In general, Leaf-level represents better water efficiency and photosynthesis processes. Such GGCMs would 
show lower yield losses (especially when accounting for CFE), ceteris paribus. 

Table 2A: Similarities and differences in ISIMIP-FT GGCMs used in this study, adapted from (Rosenzweig et al 2014, Elliott et al 2014, Nelson et al 2014b, Müller et al 2015) 

Parameters GEPIC GAEZ-IMAGE LPJ-GUESS LPJmL pDSSAT PEGASUS 

Model Type Site-based  AEZ-model Agro-ecosystem Agro-ecosystem Site-based Agro-ecosystem 

Crop Yield Actual Potential Potential Actual Actual Actual 

Crop Cultivars 
(Adaptation 1) 

Yes  Yes  Yes  No No55 Yes  

Planting window 
(Adaptation 2) 

Dynamic56 
(climate adaptation) 

Implicit Planting dates 
(climate adaptation) 

Fixed57 Fixed planting date 
Fixed (by taking the 
historical avg, for all 

years in future) 

Dynamic 
(climate adaptation) 

Nitrogen (N) 
fertilization 

Yes No No No Yes Yes 

Type of stresses 

Water, 
Temperature(T), Heat, 

Oxygen(O2), N58, 
Phosphorous, Bulk 
Density, Aluminum 

Water, T, Bulk 
Density 

Water, T Water, T Water, T, Heat, O2, N  
Water, T, Heat, N, 

Phosphorous, 
Potassium 

Light Utilization 
(Photosynthesis)59 

RUE RUE Leaf Leaf 
RUE                         

(Leaf for Soybeans) 
RUE 
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 Model Calibration and 
Type_SpatialResolution 

Yes  
Site-specific_National 

No No 
Yes 

Global_National 

Yes 
Site-specific_Field-

scale 

Yes 
Global_Gridcell 

Method used in 
Evapotranspiration 

(ET) calculation                
Penman-Monteith Priestly-Taylor Priestly-Taylor Priestly-Taylor Priestly-Taylor Priestly-Taylor 

Other Remarks 

GEPIC accounts for 
soil fertility erosion, 
which requires the 
simulations to be run 
independently for 
each decade, in order 
to equilibrate soil 
processes  

Crop yields are 
calculated for an 
interval of 5 years, 
starting from 1970. 
For the years in 
between, yields are 
linearly interpolated.  

In addition to 
allowing change in 
cultivars, yields are 
unlimited by nutrient 
or management 
constraints. This is 
another form of 
adaptation i.e. 
through increased 
fertilizer supply 

Like LPJ-GUESS, 
LPJmL also assumes 
adaptation to changed 
climatic conditions 
(e.g. T, CO2 etc), 
through increased 
ferlilizer supply. 
Moreover, LPJmL 
decides internally 
whether to grow 
winter or spring wheat 
(Müller et al 2015) 

Can be considered as 
the only GGCM that 
truly does not account 
for changes in 
adaptation and 
management practices 

PEGASUS explicitly 
accounts for heat stress 
and thus typically 
projects more 
significant reductions 
in agricultural 
productivity than the 
rest of the GGCMs 
(despite allowing for 
adaptation in sowing 
dates and varieties. It is 
typically the most 
pessimistic of all 
GGCMs) (Müller et al 
2015) 
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2. Steps involved in data cleaning and number of observations by GGCMs 

 

One notable difference in the ISIMIP-FT data vis-à-vis data from other agronomic studies is the spatial 

coverage of crops. In addition to present day croplands, crop modellers were allowed to simulate yields 

across present day non-growing regions60 as well. In order to use a reliable set of times series for our 

cross-section analyses, we follow a three stage procedure to identify and filter out noisy data. 

Step 1: For each rainfed crop used in our study, we mask the grid-cells of our original full global panel to 

retain only the global rainfed cultivated areas using the MIRCA2000 (Portmann et al 2010) global 

gridded database on cropland for different crops. 

Step 2: Next, to identify cells with anomalously high or low crop yield values or yield values showing 

questionable reliability, we filter grid-cells where annual yield remained the same for three or more 

consecutive years in the period 1972-2099. 

Step 3: Finally, we retain grid-cells where 67849 (" ℎ@⁄ ) > 0 for all 128 years (1972-2099)61. By doing 

so, we ensure the panel is balanced (i.e. we have same number of observations across all grid-cells).  

Although there is no strict requirement for a balanced panel in our regression specification, it not only 

facilitates easier computation of means of all variables at each grid-cell, but also enables consistent 

evaluation of mean responses of yield to changes in climate variables. 

The abovementioned data cleaning steps have been applied to all crops as well as to the additional panel 

used in out-of-sample calibration (i.e. 1972-2089). The total number of years in this case would be 118. 

Table 2 summarizes the sample panel used in the regression analysis resulting from the three-stage data 

cleaning procedure. 

 

 

 
                                                   
60 Crop is grown across all grid-cells (land area) where soil and weather conditions permit it. 

61 There are a few exceptions to this. GAEZ-IMAGE does not have data in RCP 4.5 for any of the crops. The multi-
GGCM panel in RCP 4.5 would therefore consist of five GGCMs. For RCP 8.5, GAEZ-IMAGE does not report data 
for years 2001-2004. Thus the panel for 1972-2099 would correspond to 124 years.  To maintain consistency, the 
multi-GGCM panel also drops data for 2001-2004 from the remaining five GGCMs. Thus the multi-GGCM in RCP 
8.5 would also span 124 years.  
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Table 3A.  Summary information of panel used in calibration, by Crop~GGCM~RCP. Observations used in 
regression with number of grid-cells in square braces. 

(i) RCP 4.5 (1972~2099) 

Crop GEPIC 
GAEZ-

IMAGEa 
LPJ-

GUESS LPJmL pDSSAT PEGASUSb 
Multi-
GGCM 

Maize 
2,715,136 
[21,212] 

- 
3,346,688 
[26,146]         

2,258,816 
[17,647]         

1,713,792         
[13,389]         

2,825,728 
[22,076]          

12,860,160 
[30,214]         

Rice 
768,896 
[6,007] 

- 
603,136 
[4,712]         

749,312 
[5,854]         

292,992         
[2,289]         

-           
2,414,336 
[18,862]         

Wheat 
1,519,872 
[11,874] 

- 
1,746,688 
[13,646]         

1,735,296 
[13,557]         

875,648         
[6,841]         

1,473,024 
[11,508]          

7,350,528 
[57,426]         

Soybeans 
879,360 
[6,870] 

- 
1,058,560 

[8,270]         
909,696 
[7,107]         

510,976         
[3,992]         

672,640 
[5,255]          

4,031,232 
[31,494]         

 

(ii) RCP 8.5 (1972~2099) 

Crop GEPIC 
GAEZ-
IMAGE 

LPJ-
GUESS LPJmL pDSSAT PEGASUS 

Multi-
GGCM 

Maize 
2,680,448 
[20,941] 

2,912,512 
[23,488] 

3,341,696 
[26,107] 

2,165,632 
[16,919] 

1,570,432 
[12,269] 

2,840,320 
[22,190] 

15,117,336 
[30,619] 

Rice 
765,184 
[5,978] 

481,368 
[3,882] 

566,784 
[4,428]         

724,480 
[5,660]         

294,400         
[2,300]         

-           
2,758,752 
[22,248]         

Wheat 
1,510,400 
[11,800] 

1,382,228 
[11,147] 

1,749,120 
[13,665]         

1,714,304 
[13,393]         

866,816         
[6,772]         

1,363,328 
[10,651]          

8,361,072 
[67,428]         

Soybeans 
879,616 
[6,872] 

7,97,072 
[6,428] 

1,041,152 
[8,134]         

893,568 
[6,981]         

435,328         
[3,401]         

643,840 
[5,030]          

4,568,904 
[36,846]         

a No data for RCP 4.5. No data for years 2001-2004 in RCP 8.5. 
b Rice is not simulated by PEGASUS 
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3. Splines of T and P coefficients for rice, soybeans and wheat, with 95% CI bands 

(i)  Rice 

 

(ii) Soybeans 

 
(iii) Wheat 

 
(a)                                                                                (b) 

GEPIC          LPJ-GUESS     LPJmL     pDSSAT    PEGASUS   Multi-GGCM 

Figure 1A: Response of (i) Rice (ii) Soybeans (iii) Wheat 4#5 67849% to (a) / and (b) 3 bins, with standard errors 
(SEs) robust to heteroscedasticity and autocorrelation. Graphs display changes in yield (%) for exposure of one day 
to a particular /(3) bin interval, relative to bins / = 15~17.5 ° ' (3 = 5~10 <</9). The 95% confidence band 
(CI) is adjusted for spatial correlation. The horizontal black line corresponds to x-axis=0 reference. CI intersecting 
the horizontal 0 reference line would imply that the corresponding coefficient is insignificant (i.e. > > 0.05). Rice is 
not simulated by PEGASUS, hence the multi-GGCM was run as a merged panel of five GGCMs. 



74 
 

4. The perplexing nature of adaptation in GAEZ-IMAGE, pDSSAT and PEGASUS  

Returning to the discussion in Section 2.3.1 of Chapter 2 for crop maize, we repeat the regressions on 
GAEZ-IMAGE, pDSSAT and PEGASUS with the inclusion of the interaction terms. The regression thus 
takes the base specification form of equation 2.2 (main text). In comparison to the responses shown in 
figure 2A of main text, we observe contrasts in the behaviour of responses to / for pDSSAT and 
PEGASUS (figure 2A here).  

(i)  Nonlinear relationship between (a) / and yields (b) 3 and 4#5 67849% 

  

(ii) Nonlinear relationship between (a) ‘/’ interaction term and 4#5 67849% (b) ‘3’ interaction term and 4#5 67849% 

  

(a)                                                                                 (b) 

GEPIC               LPJmL     pDSSAT    PEGASUS   Multi-GGCM 

Figure 2A: Response of Maize 4#5 67849% to (a) / and (b) 3 bins. Coefficient estimates are for (i) / and 3 (ii) 
interaction of / and 3 bins with time trend using the base specification (equation 2.2 in main text) for all six 
GGCMs. SEs are robust to heteroscedasticity and autocorrelation. Graphs display changes in yield (%) for exposure 
of one day to a particular /(3) bin interval, relative to bins / = 15~17.5 ° ' (3 = 5~10 <</9). The 95% 
confidence band (CI) is adjusted for spatial correlation. The horizontal black line corresponds to ? − @?7% = 0 
reference. CI intersecting the horizontal 0 reference line would imply that the corresponding coefficient is 
insignificant (i.e. > >  0.05) 
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As evident from figure 2A, GAEZ-IMAGE (dark green) has an overall muted response of / and 3, thus 

not revealing noticeable difference in responses vis-à-vis the specification used in main text (equation 

2.3). However, the response of / for pDSSAT (purple) suggest that an additional day in the [> 30℃] bin, 

is not more detrimental to yields than what is observed in figure 2A of main text. On the contrary, for 

PEGASUS (pink), an implausible positive response to extreme heat is observed suggesting that a higher 

than threshold temperature (29 ℃ for maize) is marginally beneficial for crop growth process. It is also 

interesting to note the negative response of interaction terms to extreme heat (figure 2B) suggesting that 

any adaptation in both pDSSAT and PEGASUS would have further marginal negative impacts on maize 

yields. Although lack of thorough documentation of the GGCM simulation runs make it challenging to 

provide concrete reasons behind this perplexing nature of adaptation (especially in PEGASUS), we 

discuss a few possible reasons. 

pDSSAT does not account for adaptation in the future simulation runs of ISIMIP-FT. Suffice to say, 

including interaction term results in a model misspecification. PEGASUS on the other hand is the only 

GGCM used in our study that which explicitly accounts for heat stress and typically projects more 

significant reductions in agricultural productivity than the rest of the model ensemble (Rosenzweig et al 

2014). Therefore, the higher mean growing season / (or increase in the frequency of future growing 

season days falling in >  30 ° ' bin, figure 5) in RCP 8.5 would support our earlier findings (figure 2B) 

and explain why the interaction term inadvertently captures a negative trend and attributes it (at least 

partially) to detrimental impacts of adaptation.  

The omission of interaction terms in GAEZ-IMAGE, pDSSAT and PEGASUS in further motivated by 

our sensitivity checks. Figure 3A shows the empirical cumulative distribution function (ECDF) for the 

emulators, ‘with-adaptation’ and ‘without-adaptation’ as defined in the main text. 
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                                          (i)  2030-2064                                                        (ii) 2065-2099                               

 

Figure 3A: ECDF of Relative Bias (%) in with-adaption (red) and without-adaptation (cyan) specifications of six 
maize emulators in RCP 8.5 scenario 

The ECDFs for GAEZ-IMAGE, pDSSAT and PEGASUS show that the with-adaptation model doesn't 

appear to make a huge difference to the RB. We therefore refrain from adding any complexity to its’s 

simple specification. 

However, for the remaining three emulators (GEPIC, LPJ-GUESS, LPJmL), the reduction in relative bias 

(RB) is notable. For these emulators, the RB of ‘without-adaptation’ is overwhelmingly negative, 

indicating that by omitting the interaction terms from our base specification, we systematically under-

predict the relative changes in yields. Instead, by using the ‘with-adaptation’ model we trade off reduction 

in negative bias for the introduction of slight positive bias, especially at mid-century. 

 

5. Choice of explanatory variables and non-parametric binning approach used in regression 

In line with agronomic literature (such as Schlenker and Roberts 2009, Lobell and Burke 2010), / and 3 

play the most crucial role in various stages of crop growth. With our primary goal to construct a 

parsimonious emulator that can be rapidly linked to future climate ensembles for climate risk analysis, / 

and 3 as non-parametric bins not only captures the envelope of underlying response, but also reduces the 

reliance on other complex predictors and/or their forms as used for example in some recent studies 

(Oyebamiji et al 2015, Blanc and Sultan 2015). 
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Although a specification involving / and 3 have been used in earlier empirical agronomic studies in 

various linear and non-linear transformations (see Schlenker and Roberts 2009, Lobell and Burke 2010, 

Lobell et al 2011, Wolfram and Lobell 2010), at best we are not aware of any work incorporating the 

growing season counts of daily / and 3 measures as bins. We now summarize the key advantages and 

trade-offs of the binning approach implemented in our methodology. 

The biggest advantage of the non-parametric binning approach comes from laying less restrictions in the 

functional form of the predictor variables (here / and 3) and thus able to capture the piece-wise linear 

responses of crop yields to / and 3 better. In contrast, a conventional approach that of using mean 

growing season/months / or its’ quadratic form (/H); as well as growing degree days (GDD), put a higher 

functional form restricts. Moreover, the GDD thresholds developed and used in earlier studies (notably 

Schlenker and Roberts 2009, and Schlenker and Lobell 2010) were developed within the framework of 

agriculture in the United States (U.S.). Responses of crop yields to / can vary geographically e.g. maize 

cultivated in a tropical weather could have different thresholds to extreme temperatures compared to those 

cultivated in Europe. And since we examine four crops whose responses (especially to threshold 

temperatures) would be different, a GDD approach would involve defining varying thresholds. 

Having said that, the flexibility of our methodology do come with certain trade-offs. Among these, the 

most notable is the assumption of additive separability where in irrespective of the contrast in the mean 

growing season temperatures of any two years, the marginal effect of a day in a particular bin will be 

identical. The other restriction imposed in our framework is that the effects would remain constant within 

each bin of / and 3. So to say, the marginal impact of an additional day in the lower / bin (relative to the 

omitted bin) would be the same as the impact of an additional day in the upper / bin 
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(i) Maize 

  
(ii)  Rice 

  

(iii)  Soybeans 

  
(iv)  Wheat 

  

(a) (b) 

     GAEZ-IMAGE     LPJ-GUESS     LPJmL     pDSSAT    PEGASUS    

Figure 4A: GGCMs’ yields ("/ℎ@) 1972-2099 averaged over grid-cells used in analyses in (a) RCP 4.5. (b) RCP 8.5 
for rainfed (i) Maize (ii) Rice (iii) Soybeans and (iv) Wheat. Rice is not simulated by PEGASUS. There is no data 
for GAEZ-IMAGE in RCP 4.5 
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6. Contrasting variability in mean climate for the two future periods in RCP 8.5 relative to baseline 

historical period (1972~2004) is illustrated in figure 5A. The changes in the frequency of extreme 

/ and 3 bins in 2065~2099 shows a larger variation compared to the same in 2030~2064.  

(i) / (° ') 

2030~2064                   2065~2099 

  

(ii) 3 (<</9) 

   

(a)                                                                                          (b)  

Figure 5A:  Change in distribution of (/ ° ') and (3 <</9) bins in mean periods (a) 2030~2064 and                           
(b) 2065~2099 in RCP 8.5, relative to the baseline historical period (1972~2004). Each bin is indicated by the upper 
limit, e.g. 4 − 5 << in 3 corresponds to mean P (4,5]. The lowest and the highest bins in both variables do not have 
bounds. The bins are averaged over summer months in each hemisphere (Northern, Southern), across crop maize 
growing grid-cells. Thus the changes in mean number of days imply as changes in the summer months of each 
hemisphere. 
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Table 4A. Share of crop production (%) with the corresponding RB intervals, for periods 2030~2064, 2065~2099 
shown in parentheses, and 2090~2099a shown in square braces, in (i) RCP 4.5 and (ii) RCP 8.5  

Rice 

(i) RCP 4.5 

RB 
GEPIC 

(%) 
GAEZ-IMAGEb 

(%) 
LPJ-GUESS 

(%) 
LPJmL 

(%) 
pDSSAT 

(%)  
PEGASUSb 

(%) 
Multi-GGCM 

(%) 

> 10 
0.07 

(0.12) 
[0.09] 

- 
0.38 

(0.71) 
[1.30] 

0.42 
(0.09) 
[0.14] 

0.14 
(0.06) 
[0.21] 

- 
0.31 

(0.66) 
[0.40] 

5 ~ 10 
0.23 

(0.08) 
[0.07] 

- 
0.36 

(0.78) 
[1.66] 

0.29 
(0.07) 
[0.12] 

0.13 
(0.08) 
[0.09] 

- 
0.52 

(0.51) 
[0.33] 

0 ~ 5 
53.58 

(61.90) 
[56.66] 

- 
49.03 

(49.56) 
[51.02] 

48.78 
(32.20) 
[48.84] 

45.95 
(45.44) 
[46.04] 

- 
41.51 

(25.30) 
[34.77] 

0 ~ -5 
39.59 

(33.88) 
[37.23] 

- 
45.20 

(45.54) 
[42.82] 

43.33 
(67.26) 
[50.08] 

46.43 
(41.98) 
[42.25] 

- 
47.77 

(62.20) 
[54.80] 

-5 ~ -10  
3.26 

(1.82) 
[2.55] 

- 
2.61 

(1.82) 
[1.88] 

4.17 
(0.30) 
[0.57] 

2.77 
(4.86) 
[6.52] 

- 
4.69 

(5.80) 
[4.17] 

< -10 

3.27 
(2.20) 
[3.40] 

- 
2.43 

(1.58) 
[1.31] 

3.01 
(0.09) 
[0.28] 

4.57 
(7.57) 
[4.89] 

- 
5.19 

(5.53) 
[5.54] 

(ii) RCP 8.5 

RB 
GEPIC 

(%) 
GAEZ-IMAGE 

(%) 
LPJ-GUESS 

(%) 
LPJmL 

(%) 
pDSSAT 

(%)  
PEGASUS 

(%) 
Multi-GGCM 

(%) 

> 10 
4.20 

(0.03) 
[0.02] 

1.51 
(0.15) 
 [0.11] 

3.03 
(0.05) 
[0.29] 

3.31 
(0.11) 
[0.08] 

2.05 
(0.04) 
[0.03] 

- 
3.48 

(0.04) 
[0.03] 

5 ~ 10 
2.82 

(0.01) 
[0.03] 

1.58 
(0.14) 
[0.03] 

2.57 
(0.18) 
[0.13] 

5.60 
(0.10) 
[0.22] 

2.27 
(0.06) 
[0.06] 

- 
3.86 

(0.06) 
[0.06] 

0 ~ 5 
37.19 

(63.38) 
[62.67] 

22.81 
(49.47) 
[58.58] 

47.91 
(41.73) 
[25.26] 

45.59 
(32.45) 
[31.23] 

23.89 
(14.52) 
[15.87] 

- 
30.13 

(14.52) 
[15.87] 

0 ~ -5 
52.00 

(32.42) 
[33.74] 

57.52 
(43.78) 
[36.35] 

42.03 
(53.95) 
[66.61] 

29.90 
(67.23) 
[68.02] 

60.71 
(80.51) 
[79.57] 

- 
49.81 

(80.51) 
[79.57] 

-5 ~ -10  
2.24 

(1.75) 
[1.85] 

8.40 
(3.15) 
 [1.78] 

2.50 
(1.94) 
[4.21] 

6.90 
(0.08) 
[0.36] 

6.61 
(2.70) 
[2.01] 

- 
5.71 

(2.70) 
[2.01] 

< -10 
1.56 

(2.40) 
[1.70] 

8.17 
(3.31) 
[3.16] 

1.95 
(3.06) 
[3.56] 

8.69 
(0.03) 
[0.09] 

4.46 
(2.16) 
[2.25] 

- 
7.00 

(2.16) 
[2.46] 

a Regressions for out-of-sample validation were run on a panel spanning 1972~2089, in contrast to the in-
sample which are on 1972~2099  
b Data not available 
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Wheat 
(i) RCP 4.5 

RB 
 

GEPIC 
(%) 

GAEZ-IMAGEb 

(%) 
LPJ-GUESS 

(%) 
LPJmL 

(%) 
pDSSAT 

(%)  
PEGASUS 

(%) 
Multi-GGCM 

(%) 

> 10 
0.54 

(0.14) 
[1.04] 

- 
0.67 

(0.66) 
[3.36] 

0.03 
(0.00) 
[0.53] 

0.00 
(0.00) 
[0.00] 

2.35 
(0.20) 
[0.21] 

0.24 
(2.98) 
[0.81] 

5 ~ 10 
0.34 

(0.15) 
[1.06] 

- 
0.55 

(1.76) 
[2.55] 

0.04 
(0.00) 
[1.11] 

0.04 
(0.00) 
[0.00] 

2.33 
(0.14) 
[0.18] 

0.42 
(4.50) 
[0.83] 

0 ~ 5 
35.27 

(38.57) 
[58.71] 

- 
30.25 

(39.26) 
[66.59] 

35.45 
(42.26) 
[48.65] 

23.03 
(21.04) 
[31.40] 

35.98 
(29.55) 
[42.89] 

28.23 
(87.05) 
[68.52] 

0 ~ -5 
50.39 

(53.59) 
[34.94] 

- 
53.85 

(46.89) 
[24.73] 

56.28 
(49.62) 
[43.71] 

61.80 
(66.43) 
[52.85] 

47.86 
(57.92) 
[46.70] 

54.31 
(5.15) 

[26.87] 

-5 ~ -10  
6.96 

(3.57) 
[2.29] 

- 
8.56 

(5.52) 
[1.53] 

4.30 
(4.29) 
[3.14] 

7.83 
(6.25) 
[6.81] 

5.23 
(5.56) 
[5.46] 

7.89 
(0.18) 
[1.27] 

< -10 

6.50 
(3.98) 
[1.96] 

- 
6.13 

(5.90) 
[1.24] 

3.91 
(3.82) 
[2.86] 

7.30 
(6.26) 
[8.95] 

6.25 
(6.64) 
[4.57] 

8.90 
(0.14) 
[1.69] 

 

(ii) RCP 8.5 
RB  

 
GEPIC 

(%) 
GAEZ-IMAGE 

(%) 
LPJ-GUESS 

(%) 
LPJmL 

(%) 
pDSSAT 

(%)  
PEGASUS 

(%) 
Multi-GGCM 

(%) 

> 10 
1.99 

(0.01) 
[0.03] 

1.27 
(0.02) 
 [0.02] 

1.99 
(0.02) 
[0.04] 

0.97 
(0.00) 
[0.00] 

0.10 
(0.00) 
[0.00] 

1.02 
(0.03) 
[0.02] 

0.84 
(0.01) 
[0.00] 

5 ~ 10 
2.02 

(0.05) 
[0.09] 

1.66 
(0.01) 
[0.01] 

1.95 
(0.12) 
[0.04] 

0.62 
(0.00) 
[0.00] 

0.19 
(0.00) 
[0.00] 

1.09 
(0.02) 
[0.06] 

0.95 
(0.01) 
[0.02] 

0 ~ 5 
37.75 

(33.88) 
[21.45] 

25.10 
(76.56) 
[74.31] 

42.79 
(35.21) 
[31.41] 

40.02 
(31.75) 
[25.63] 

24.18 
(30.27) 
[23.00] 

41.85 
(38.12) 
[29.68] 

32.41 
(34.84) 
[32.92] 

0 ~ -5 
53.58 

(56.75) 
[65.07] 

69.59 
(21.54) 
[23.60] 

46.76 
(54.53) 
[62.30] 

54.74 
(56.06) 
[61.48] 

64.63 
(56.25) 
[63.32] 

49.75 
(55.82) 
[64.19] 

56.14 
(60.91) 
[63.87] 

-5 ~ -10  
2.43 

(4.80) 
[7.07] 

1.19 
(1.04) 
 [1.04] 

3.41 
(4.12) 
[3.82] 

1.92 
(5.56) 
[6.64] 

5.37 
(5.67) 
[6.89] 

3.10 
(3.49) 
[3.07] 

4.92 
(2.20) 
[1.91] 

< -10 
2.22 

(4.52) 
[6.29] 

1.19 
(0.83) 
[1.03] 

3.09 
(6.10) 
[2.39] 

1.73 
(6.63) 
[6.24] 

5.53 
(7.81) 
[6.78] 

3.20 
(2.52) 
[2.97] 

4.73 
(2.05) 
[1.27] 

a Regressions for out-of-sample validation were run on a panel spanning 1972~2089, in contrast to the in-
sample which are on 1972~2099  
b Data not available 
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Soybeans 
(i) RCP 4.5 

RB  
 

GEPIC 
(%) 

GAEZ-IMAGEb 

(%) 
LPJ-GUESS 

(%) 
LPJmL 

(%) 
pDSSAT 

(%)  
PEGASUS 

(%) 
Multi-GGCM 

(%) 

> 10 
0.38 

(0.86) 
[1.32] 

- 
3.70 

(7.38) 
[11.85] 

1.20 
(0.23) 
[0.28] 

0.00 
(0.00) 
[0.00] 

0.01 
(0.00) 
[0.03] 

1.17 
(8.78) 
[1.27] 

5 ~ 10 
0.92 

(0.10) 
[1.48] 

- 
3.22 

(4.70) 
[6.62] 

0.77 
(0.43) 
[0.22] 

0.00 
(0.00) 
[0.00] 

0.00 
(0.00) 
[0.00] 

1.71 
(8.30) 
[2.03] 

0 ~ 5 
52.16 

(61.62) 
[65.75] 

- 
41.33 

(38.02) 
[53.28] 

42.36 
(46.50) 
[62.34] 

11.00 
(9.27) 
[34.11] 

71.01 
(64.54) 
[62.70] 

50.82 
(82.13) 
[87.02] 

0 ~ -5 
41.38 

(32.44) 
[24.88] 

- 
44.55 

(42.70) 
[25.08] 

42.63 
(44.87) 
[30.89] 

61.61 
(86.84) 
[61.18] 

24.96 
(33.80) 
[30.24] 

42.62 
(0.71) 
[9.04] 

-5 ~ -10  
2.71 

(2.13) 
[3.32] 

- 
3.46 

(4.32) 
[1.58] 

7.37 
(2.79) 
[2.71] 

16.29 
(1.88) 
[2.50] 

1.30 
(0.85) 
[3.93] 

1.61 
(0.07) 
[0.41] 

< -10 

2.45 
(2.84) 
[3.24] 

- 
3.73 

(2.88) 
[1.59] 

5.68 
(5.18) 
[3.55] 

11.09 
(2.01) 
[2.21] 

2.72 
(0.81) 
[3.11] 

2.06 
(0.00) 
[0.24] 

 

(ii) RCP 8.5 

RB 
GEPIC 

(%) 
GAEZ-IMAGE 

(%) 
LPJ-GUESS 

(%) 
LPJmL 

(%) 
pDSSAT 

(%)  
PEGASUS 

(%) 
Multi-GGCM 

(%) 

> 10 
4.51 

(0.02) 
[0.01] 

0.84 
(0.03) 
 [0.02] 

3.70 
(0.10) 
[0.09] 

3.45 
(0.01) 
[0.03] 

2.23 
(0.00) 
[0.00] 

0.23 
(0.00) 
[0.00] 

4.33 
(0.02) 
[0.03] 

5 ~ 10 
4.90 

(0.01) 
[0.02] 

0.63 
(0.03) 
[0.02] 

5.64 
(0.10) 
[0.08] 

2.81 
(0.08) 
[0.02] 

1.10 
(0.00) 
[0.00] 

0.22 
(0.00) 
[0.00] 

4.10 
(0.02) 
[0.06] 

0 ~ 5 
71.28 

(54.69) 
[48.38] 

18.25 
(63.89) 
[51.64] 

67.01 
(48.46) 
[32.54] 

53.00 
(36.09) 
[31.60] 

26.99 
(6.65) 

[25.23] 

63.87 
(81.25) 
[80.97] 

76.47 
(39.87) 
[23.51] 

0 ~ -5 
18.68 

(40.82) 
[46.19] 

71.72 
(34.07) 
[45.51] 

22.89 
(48.89) 
[64.33] 

33.61 
(58.37) 
[65.81] 

52.41 
(90.21) 
[65.23] 

28.24 
(17.95) 
[18.37] 

13.36 
(56.64) 
[72.14] 

-5 ~ -10  
0.14 

(2.01) 
[2.24] 

4.52 
(1.04) 
 [1.28] 

0.18 
(1.16) 
[1.35] 

2.85 
(4.76) 
[1.39] 

7.79 
(2.49) 
[2.95] 

4.15 
(0.40) 
[0.36] 

0.86 
(1.91) 
[2.09] 

< -10 
0.49 

(2.44) 
[3.16] 

4.04 
(0.95) 
[1.53] 

0.57 
(1.28) 
[1.64] 

4.27 
(0.68) 
[1.14] 

9.48 
(0.65) 
[6.59] 

3.30 
(0.40) 
[0.30] 

0.88 
(1.54) 
[2.18] 

a Regressions for out-of-sample validation were run on a panel spanning 1972~2089, in contrast to the in-
sample which are on 1972~2099  
b Data not available 
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Appendix B: Supplementary material for Chapter 3 

 

1. Agro-Ecological Zones (AEZ) 
 

A detailed discussion of AEZ is provided in (Lee et al 2005) . The map in figure 1B shows the 18 AEZs 

formed by overlaying the combination of 6 categories of duration of growing period (DGP) with the 3 

climatic zones (table 1B). 

 

 

Figure 1B Map of 18 global AEZs at 0.5 degree grid cell resolution (Source Lee et al 2005) 
 

Table 1B Definition of 18 global AEZs as defined by DGP and climate zone  (Source Lee et al 2005) 

DGP in daysa  
Climate Zones 

Tropical Temperate Boreal 

0-59  AEZ1 AEZ7 AEZ13 
60-119 AEZ2 AEZ8 AEZ14 

120-179 AEZ3 AEZ9 AEZ15 
180-239 AEZ4 AEZ10 AEZ16 
240-299 AEZ5 AEZ11 AEZ17 

>300  AEZ6 AEZ12 AEZ18 

a DGP <  120 days is classed as Short Growing Period (SGP) and DGP >  120 days as Long Growing Period (LGP) 
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Table 2B Grouping of 6AEZs (from the parent 18 AEZs) used in this study (patterned after Blanc and Sultan 2015) 

AEZ 

groups 
Growing Period Climate Zones AEZ 

AEZ_G1 SGP Tropical 1, 2 

AEZ_G2 LGP Tropical 3, 4, 5, 6 

AEZ_G3 SGP Temperate 7, 8 

AEZ_G4 LGP Temperate 9, 10, 11, 12 

AEZ_G5 SGP Boreal 13, 14 

AEZ_G6 LGP Boreal 15, 16, 17, 18 

 

Table 3B Number of observations used in regressionsa for 3 GGCMs by 6 AEZ groups. 

AEZ groups GAEZ-IMAGE pDSSAT PEGASUS 

AEZ_G1 77,862 72,452 96,760 

AEZ_G2 1,137,948 633,600 1,143,302 

AEZ_G3 236,778 169,566 381,376 

AEZ_G4 961,134 500,792 876,622 

AEZ_G5 19,608 10,266 41,182 

AEZ_G6 66,348 4,130 92,040 

a Regression was run over a 118-years balanced panel spanning 1972-2089 
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Table 4B Regression summary with Clustered Robust Standard Errors (S.E.s) in parentheses: base_C3D specification62 

=========================================================================================================================================================================== 

Dependent variable: log. Yield (Maize) 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

                        GEPIC           GAEZ-IMAGE         LPJ-GUESS            LPJmL             pDSSAT             PEGASUS     

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

tas_5lo                     -0.0177336***            -0.0118239***            -0.0184172***              -0.0012387              -0.0042704*             -0.0498848***       

                             (0.0037375)              (0.0013739)              (0.0031860)              (0.0063179)              (0.0023194)              (0.0033731)        

tas_5_7p5                    -0.0051788*             -0.0028661***            -0.0102919***              -0.0030695             -0.0105207***            -0.0366603***       

                             (0.0027153)              (0.0004868)              (0.0019782)              (0.0051481)              (0.0020467)              (0.0028614)        

tas_7p5_10                  -0.0064849***            -0.0042128***            -0.0120987***              0.0046670              -0.0038158***            -0.0279764***       

                             (0.0017033)              (0.0003216)              (0.0018656)              (0.0028712)              (0.0011401)              (0.0027144)        

tas_10_12p5                 -0.0062979***            -0.0018308***            -0.0118638***              0.0023509              -0.0059679***            -0.0226616***       

                             (0.0018142)              (0.0002009)              (0.0015682)              (0.0035341)              (0.0008813)              (0.0018919)        

tas_12p5_15                   -0.0014921             -0.0002855***            -0.0073496***            -0.0095538***            -0.0024764***            -0.0058462***       

                             (0.0011153)              (0.0001017)              (0.0008666)              (0.0026029)              (0.0007470)              (0.0014180)        

tas_17p5_20                 -0.0085895***             -0.0001049*               -0.0006156               -0.0028565               -0.0004941              0.0037487***       

                             (0.0009173)              (0.0000615)              (0.0005218)              (0.0019033)              (0.0003095)              (0.0006311)        

tas_20_22p5                 -0.0186937***            -0.0004481***            -0.0040602***              -0.0018595             -0.0020648***             0.0029576***       

                             (0.0010020)              (0.0000876)              (0.0004863)              (0.0013047)              (0.0003790)              (0.0008083)        

tas_22p5_25                 -0.0242674***            -0.0003823***            -0.0063491***            -0.0049439***            -0.0030794***              -0.0012274        

                             (0.0011594)              (0.0001060)              (0.0005168)              (0.0012811)              (0.0004131)              (0.0007862)        

tas_25_27p5                 -0.0264449***            -0.0006084***            -0.0076854***            -0.0074324***            -0.0031882***            -0.0062677***       

                             (0.0012334)              (0.0001228)              (0.0005319)              (0.0012530)              (0.0005006)              (0.0008033)        

tas_27p5_30                 -0.0264329***            -0.0008097***            -0.0081796***            -0.0085444***            -0.0037655***            -0.0111963***       

                             (0.0013229)              (0.0001380)              (0.0005754)              (0.0012950)              (0.0005059)              (0.0008416)        

tas_g30                     -0.0232541***            -0.0012768***            -0.0080615***            -0.0084584***            -0.0083611***            -0.0184335***       

                             (0.0016513)              (0.0001548)              (0.0006450)              (0.0014628)              (0.0006022)              (0.0009513)        

p_3lo                       -0.0135086***            -0.0003510***            -0.0073808***            -0.0049246***            -0.0054347***              -0.0005318        

                             (0.0014306)              (0.0000959)              (0.0006058)              (0.0006405)              (0.0006168)              (0.0005150)        

p_3_4                        0.0104888***             0.0003215***             -0.0015452**              -0.0001066               0.0003909               0.0021593***       

                             (0.0012410)              (0.0000448)              (0.0006354)              (0.0013515)              (0.0005614)              (0.0004079)        

p_4_5                        0.0060332***             0.0001272***              -0.0004421               -0.0011114               0.0000141               0.0012588***       

                             (0.0007366)              (0.0000334)              (0.0004293)              (0.0009217)              (0.0003991)              (0.0002811)        

p_10_15                      0.0027802***             -0.0000711**             0.0011158**               0.0013492*             -0.0009468***            -0.0017750***       

                             (0.0006500)              (0.0000292)              (0.0004456)              (0.0007229)              (0.0002922)              (0.0002249)        

p_15_20                      0.0023372***            -0.0000949***             0.0010680**              0.0027287***            -0.0024371***            -0.0028451***       

                             (0.0008117)              (0.0000364)              (0.0004263)              (0.0010147)              (0.0006366)              (0.0002868)        

p_20up                       0.0042405***             -0.0001573**             0.0021316***             0.0029687***            -0.0034095***            -0.0044260***       

                             (0.0014670)              (0.0000705)              (0.0006640)              (0.0010361)              (0.0007378)              (0.0004158)        

vpd_3lo                     -0.0111219***            -0.0003247***            -0.0078033***            -0.0088972***             -0.0010695*             -0.0048970***       

                             (0.0007712)              (0.0000964)              (0.0004960)              (0.0011717)              (0.0006019)              (0.0006626)        

vpd_3_5                     -0.0057143***             0.0001085**             -0.0026612***            -0.0020935***             0.0019487***            -0.0037303***       

                             (0.0005477)              (0.0000470)              (0.0002672)              (0.0005008)              (0.0004875)              (0.0003684)        

vpd_5_7                       -0.0007941              0.0001024***              0.0002537               -0.0008199**              0.0001878              -0.0013454***       

                             (0.0004968)              (0.0000257)              (0.0003691)              (0.0004126)              (0.0003215)              (0.0002584)        

vpd_9_11                     0.0056991***             0.0001385**              0.0028883***              0.0010107*              0.0034148***             0.0019872***       

                             (0.0008826)              (0.0000541)              (0.0004212)              (0.0005975)              (0.0003440)              (0.0003639)        

vpd_11up                    -0.0095447***              0.0000398              -0.0028746***            -0.0058014***             -0.0005386*              0.0037319***       

                             (0.0007443)              (0.0000609)              (0.0002904)              (0.0004569)              (0.0003227)              (0.0003640)        

tas_5lo:Time_trend           0.0004842***                                      0.0001605***             0.0005807***                                                  

                             (0.0000953)                                       (0.0000549)              (0.0001295)                                                          

                                                   
62 The bins / = 15~17.5 °', 3 = 5~10 <</9 and C3D = 7~9 ℎ3@ were omitted in regressions as reference category. GGCMs GAEZ-IMAGE, pDSSAT and 
PEGASUS do not include interaction terms in regression. 
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Table 4B…continued 
 

=========================================================================================================================================================================== 

                        GEPIC           GAEZ-IMAGE         LPJ-GUESS            LPJmL             pDSSAT             PEGASUS     

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

tas_5_7p5:Time_trend          0.0000143                                         0.0000112                0.0000729                                                           

                             (0.0000388)                                       (0.0000199)              (0.0000807)                                                          

tas_7p5_10:Time_trend         0.0000402                                        0.0000451**             -0.0001566***                                                         

                             (0.0000303)                                       (0.0000192)              (0.0000471)                                                          

tas_10_12p5:Time_trend      -0.0000748***                                      0.0000818***              -0.0000581                                                          

                             (0.0000286)                                       (0.0000183)              (0.0000506)                                                          

tas_12p5_15:Time_trend       -0.0000297**                                      0.0000618***             0.0000766***                                                         

                             (0.0000143)                                       (0.0000106)              (0.0000233)                                                          

tas_17p5_20:Time_trend       0.0000767***                                      0.0000145**              0.0000672***                                                         

                             (0.0000109)                                       (0.0000065)              (0.0000194)                                                          

tas_20_22p5:Time_trend       0.0001258***                                      0.0000394***             0.0000427***                                                         

                             (0.0000101)                                       (0.0000054)              (0.0000122)                                                          

tas_22p5_25:Time_trend       0.0000950***                                      0.0000297***             0.0000344***                                                         

                             (0.0000107)                                       (0.0000054)              (0.0000121)                                                          

tas_25_27p5:Time_trend       0.0000444***                                      0.0000103**               0.0000077                                                           

                             (0.0000080)                                       (0.0000049)              (0.0000099)                                                          

tas_27p5_30:Time_trend        0.0000111                                         -0.0000056               -0.0000068                                                          

                             (0.0000087)                                       (0.0000051)              (0.0000104)                                                          

tas_g30:Time_trend          -0.0000439***                                     -0.0000147***            -0.0000348***                                                         

                             (0.0000123)                                       (0.0000057)              (0.0000119)                                                          

p_3lo:Time_trend              0.0000064                                        0.0000094**             -0.0000217***                                                         

                             (0.0000076)                                       (0.0000041)              (0.0000077)                                                          

p_3_4:Time_trend            -0.0000511***                                      0.0000670***             0.0000585**                                                          

                             (0.0000189)                                       (0.0000107)              (0.0000235)                                                          

p_4_5:Time_trend            -0.0000328***                                      0.0000276***             0.0000513***                                                         

                             (0.0000112)                                       (0.0000067)              (0.0000157)                                                          

p_10_15:Time_trend          -0.0000479***                                      -0.0000135**             -0.0000279**                                                         

                             (0.0000096)                                       (0.0000068)              (0.0000117)                                                          

p_15_20:Time_trend          -0.0000244***                                       -0.0000003             -0.0000422***                                                         

                             (0.0000095)                                       (0.0000064)              (0.0000146)                                                          

p_20up:Time_trend           -0.0000453***                                      0.0000180***             -0.0000313**                                                         

                             (0.0000157)                                       (0.0000061)              (0.0000143)                                                          

vpd_3lo:Time_trend           0.0000182***                                       0.0000057               0.0000923***                                                         

                             (0.0000066)                                       (0.0000072)              (0.0000206)                                                          

vpd_3_5:Time_trend           -0.0000110*                                       -0.0000088**              0.0000030                                                           

                             (0.0000057)                                       (0.0000043)              (0.0000077)                                                          

vpd_5_7:Time_trend           -0.0000140*                                       -0.0000102**              0.0000032                                                           

                             (0.0000075)                                       (0.0000050)              (0.0000070)                                                          

vpd_9_11:Time_trend          0.0000644***                                      0.0000197***             0.0000389***                                                         

                             (0.0000107)                                       (0.0000048)              (0.0000090)                                                          

vpd_11up:Time_trend          0.0000479***                                      0.0000221***             0.0000418***                                                         

                             (0.0000074)                                       (0.0000032)              (0.0000060)                                                          

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Observations        2,519,654        2,684,928           3,091,600           2,039,512          1,500,606            2,642,138         

R2                  0.5376031        0.6882976           0.8544042           0.8208722          0.7312246            0.8593720         

Adjusted R2         0.5336430        0.6855367           0.8531577           0.8193373          0.7289236            0.8581690         

Residual S.E.   0.6938001(df=2498257) 0.1128816(df=2661354) 0.2712849(df=3065356) 0.3683743(df=2022184) 0.4007698(df=1487867) 0.4729892(df=2619725) 

============================================================================================================================================================================ 

Note:                                                                                                 *p<0.1; **p<0.05; ***p<0.01 
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Table 5B Regression summary with Clustered Robust S.E.s in parentheses: AEZ specification63 
============================================================================================== 

Dependent variable: log. Yield (Maize) 
                    -------------------------------------------------------------------------- 

                           GAEZ-IMAGE                 pDSSAT                  PEGASUS          

---------------------------------------------------------------------------------------------- 

tas_12p5lo                 -0.0175499              0.6082852***              -0.0286904        

                          (0.0432454)              (0.1983485)              (0.0963355)        

tas_12p5_15                0.0263049                -0.0299457               0.0589668         

                          (0.0328767)              (0.0877869)              (0.0435692)        

tas_17p5_20                -0.0019484               0.0027642                0.0061861         

                          (0.0030453)              (0.0052020)              (0.0125026)        

tas_20_22p5                -0.0014653               0.0027368                0.0061610         

                          (0.0031670)              (0.0051457)              (0.0124762)        

tas_22p5_25                -0.0014710               0.0009220                -0.0000347        

                          (0.0031542)              (0.0057823)              (0.0124104)        

tas_25_27p5                -0.0017343               0.0039287                0.0002837         

                          (0.0031696)              (0.0062820)              (0.0125418)        

tas_g27p5                  -0.0022958               -0.0013277               -0.0129658        

                          (0.0031351)              (0.0064768)              (0.0126447)        

p_3lo                    -0.0039287***            -0.0093082***             0.0067191***       

                          (0.0009376)              (0.0014002)              (0.0019596)        

p_3_4                     0.0014507***              0.0004925               0.0032451***       

                          (0.0004297)              (0.0020038)              (0.0011202)        

p_4_5                      0.0001957                -0.0006230              0.0026380***       

                          (0.0004185)              (0.0013057)              (0.0005947)        

p_10_15                   0.0010980**               -0.0017090             -0.0067325***       

                          (0.0005111)              (0.0015430)              (0.0009499)        

p_15_20                   0.0031227***              -0.0040748             -0.0114888***       

                          (0.0007553)              (0.0025684)              (0.0017919)        

p_20up                    0.0058055***            -0.0086988***            -0.0151243***       

                          (0.0014258)              (0.0032690)              (0.0026495)        

tas_12p5lo:AEZ_G2          0.0168003              -0.6071749***              0.0357766         

                          (0.0432470)              (0.1983567)              (0.0963590)        

tas_12p5_15:AEZ_G2         -0.0266874               0.0309361                -0.0547973        

                          (0.0328758)              (0.0877865)              (0.0435384)        

tas_17p5_20:AEZ_G2         0.0018640                -0.0037239               -0.0114066        

                          (0.0030429)              (0.0052089)              (0.0124797)        

tas_20_22p5:AEZ_G2         0.0012130                -0.0048883               -0.0164041        

                          (0.0031668)              (0.0051475)              (0.0125043)        

tas_22p5_25:AEZ_G2         0.0012274                -0.0047881               -0.0151293        

                          (0.0031532)              (0.0057676)              (0.0124496)        

tas_25_27p5:AEZ_G2         0.0013668                -0.0067630               -0.0181971        

                          (0.0031699)              (0.0062541)              (0.0125893)        

tas_g27p5:AEZ_G2           0.0014055                -0.0059235               -0.0125035        

                          (0.0031357)              (0.0064413)              (0.0126957)        

p_3lo:AEZ_G2              0.0036221***             0.0041239***             -0.0039663**       

                          (0.0009212)              (0.0015953)              (0.0019684)        

p_3_4:AEZ_G2             -0.0013396***              -0.0028215               0.0006563         

                          (0.0004351)              (0.0022910)              (0.0011570)        

p_4_5:AEZ_G2               -0.0001180               -0.0008333               0.0002160         

                          (0.0004217)              (0.0014731)              (0.0006422)        

p_10_15:AEZ_G2            -0.0011785**              0.0005461               0.0035842***       

                          (0.0005095)              (0.0015855)              (0.0009917)        

p_15_20:AEZ_G2           -0.0033065***              0.0007171               0.0071287***       

                          (0.0007556)              (0.0027543)              (0.0018157)        

p_20up:AEZ_G2            -0.0061944***              0.0034092               0.0071017***       

                          (0.0014242)              (0.0034329)              (0.0026451)        

tas_12p5lo:AEZ_G3          0.0156022              -0.6110540***              0.0203225         

                          (0.0432144)              (0.1983033)              (0.0964250)        

tas_12p5_15:AEZ_G3         -0.0267040               0.0298569                -0.0591969        

                          (0.0328889)              (0.0878120)              (0.0433849)        

tas_17p5_20:AEZ_G3         0.0024903                -0.0026099               -0.0020008        

                          (0.0030616)              (0.0052179)              (0.0125785)        

tas_20_22p5:AEZ_G3         0.0021101                -0.0041914               0.0022694         

                          (0.0031907)              (0.0052423)              (0.0126057)        

                                                   
63 The bins / = 15~17.5 °' and 3 = 5~10 <</9 ℎ3@, along with their interactions with AEZ groups were 
omitted in regressions as reference category. 
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Table 5B…continued 
============================================================================================== 

                           GAEZ-IMAGE                 pDSSAT                  PEGASUS          

---------------------------------------------------------------------------------------------- 

tas_22p5_25:AEZ_G3         0.0023109                -0.0047541               0.0052403         

                          (0.0031546)              (0.0058588)              (0.0124963)        

tas_25_27p5:AEZ_G3         0.0038144                -0.0066287               0.0033217         

                          (0.0031721)              (0.0063039)              (0.0125872)        

tas_g27p5:AEZ_G3           0.0023485                -0.0014976               0.0082639         

                          (0.0031514)              (0.0064892)              (0.0127296)        

p_3lo:AEZ_G3               0.0008879              -0.0091029***            -0.0145943***       

                          (0.0010354)              (0.0024081)              (0.0027622)        

p_3_4:AEZ_G3              -0.0014108**              -0.0037512              0.0048413***       

                          (0.0005536)              (0.0024040)              (0.0015877)        

p_4_5:AEZ_G3               -0.0006080               -0.0016682               0.0021868*        

                          (0.0005180)              (0.0016339)              (0.0011268)        

p_10_15:AEZ_G3             -0.0005960              0.0108563***             0.0046658***       

                          (0.0006548)              (0.0023252)              (0.0016220)        

p_15_20:AEZ_G3             -0.0015856              0.0191247***             0.0075970***       

                          (0.0010071)              (0.0037649)              (0.0027004)        

p_20up:AEZ_G3            -0.0055651***             0.0284752***              0.0032197         

                          (0.0015688)              (0.0070636)              (0.0036175)        

tas_12p5lo:AEZ_G4          0.0159382              -0.6148303***              -0.0050338        

                          (0.0432406)              (0.1983412)              (0.0963158)        

tas_12p5_15:AEZ_G4         -0.0270213               0.0265906                -0.0659889        

                          (0.0328770)              (0.0877692)              (0.0435489)        

tas_17p5_20:AEZ_G4         0.0020431                -0.0029484               -0.0018705        

                          (0.0030449)              (0.0051972)              (0.0123051)        

tas_20_22p5:AEZ_G4         0.0011826                -0.0041325               -0.0018988        

                          (0.0031675)              (0.0051750)              (0.0122773)        

tas_22p5_25:AEZ_G4         0.0011486                -0.0041279               0.0000644         

                          (0.0031538)              (0.0057424)              (0.0122857)        

tas_25_27p5:AEZ_G4         0.0012374                -0.0071803               -0.0025078        

                          (0.0031663)              (0.0062554)              (0.0124362)        

tas_g27p5:AEZ_G4           0.0013617                -0.0054574               0.0023431         

                          (0.0031297)              (0.0064643)              (0.0125383)        

p_3lo:AEZ_G4              0.0038778***              0.0004712              -0.0057653***       

                          (0.0009381)              (0.0015863)              (0.0020985)        

p_3_4:AEZ_G4             -0.0012409***              0.0008060                -0.0021349        

                          (0.0004417)              (0.0020342)              (0.0013547)        

p_4_5:AEZ_G4               -0.0001007               0.0019279               -0.0016823**       

                          (0.0004248)              (0.0013436)              (0.0008085)        

p_10_15:AEZ_G4            -0.0012675**              0.0024359               0.0040539***       

                          (0.0005157)              (0.0016111)              (0.0011260)        

p_15_20:AEZ_G4           -0.0033486***             0.0053961**              0.0073943***       

                          (0.0007515)              (0.0027010)              (0.0019398)        

p_20up:AEZ_G4            -0.0060063***             0.0100730***             0.0093106***       

                          (0.0014306)              (0.0037032)              (0.0028415)        

tas_12p5lo:AEZ_G5          0.0140662              -0.6169890***              0.0096670         

                          (0.0432403)              (0.1983570)              (0.0963748)        

tas_12p5_15:AEZ_G5         -0.0253089               0.0247339                -0.0657158        

                          (0.0328887)              (0.0878145)              (0.0435797)        

tas_17p5_20:AEZ_G5        0.0067638**               -0.0011473               0.0041585         

                          (0.0033593)              (0.0053854)              (0.0125922)        

tas_20_22p5:AEZ_G5         0.0042321                -0.0049094               0.0072913         

                          (0.0033614)              (0.0051924)              (0.0125540)        

tas_22p5_25:AEZ_G5         0.0023931                -0.0049593               0.0131044         

                          (0.0033867)              (0.0058143)              (0.0125070)        

tas_25_27p5:AEZ_G5         0.0048066                -0.0086230               0.0157380         

                          (0.0035692)              (0.0063737)              (0.0126329)        

tas_g27p5:AEZ_G5           -0.0028015               -0.0042500               0.0042584         

                          (0.0033098)              (0.0065836)              (0.0127530)        

p_3lo:AEZ_G5               -0.0010889             -0.0119311***              0.0006122         

                          (0.0015680)              (0.0017555)              (0.0028969)        

p_3_4:AEZ_G5              -0.0024456*             -0.0129316***              -0.0000085        

                          (0.0013810)              (0.0024720)              (0.0022930)        

p_4_5:AEZ_G5               -0.0010316             -0.0089168***              -0.0011482        

                          (0.0010144)              (0.0017763)              (0.0018550)        

p_10_15:AEZ_G5             0.0018873               0.0133250***              0.0034796    

                          (0.0018996)              (0.0028346)              (0.0025361)       
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Table 5B…continued 
============================================================================================== 

                           GAEZ-IMAGE                 pDSSAT                  PEGASUS          

---------------------------------------------------------------------------------------------- 

p_15_20:AEZ_G5             0.0024267               0.0347399***             0.0130403***       

                          (0.0034244)              (0.0080764)              (0.0045838)        

p_20up:AEZ_G5              -0.0017109              0.0624820***             0.0181468***       

                          (0.0052586)              (0.0147142)              (0.0053252)        

tas_12p5lo:AEZ_G6          0.0123906              -0.6244849***              0.0021541         

                          (0.0432429)              (0.1983523)              (0.0963382)        

tas_12p5_15:AEZ_G6         -0.0259563               0.0227506                -0.0628861        

                          (0.0328784)              (0.0878291)              (0.0436082)        

tas_17p5_20:AEZ_G6         0.0024082                -0.0023164               0.0021435         

                          (0.0030532)              (0.0055523)              (0.0125461)        

tas_20_22p5:AEZ_G6         0.0010396                -0.0020706               0.0059469         

                          (0.0031798)              (0.0053659)              (0.0125001)        

tas_22p5_25:AEZ_G6         -0.0002792               -0.0058395               0.0155059         

                          (0.0031655)              (0.0059670)              (0.0124283)        

tas_25_27p5:AEZ_G6         0.0002128                -0.0098301               0.0122426         

                          (0.0031858)              (0.0064858)              (0.0125626)        

tas_g27p5:AEZ_G6           0.0000228               -0.0125823*               0.0137153         

                          (0.0031738)              (0.0066752)              (0.0126853)        

p_3lo:AEZ_G6              0.0039661***              0.0034641               0.0075283***       

                          (0.0009637)              (0.0028234)              (0.0020805)        

p_3_4:AEZ_G6              -0.0009404*               0.0003256                0.0010862         

                          (0.0005670)              (0.0053222)              (0.0013721)        

p_4_5:AEZ_G6               0.0000282                0.0021495                -0.0009648        

                          (0.0005339)              (0.0037311)              (0.0009847)        

p_10_15:AEZ_G6            -0.0013295*              0.0129819***              0.0024959*        

                          (0.0006842)              (0.0046049)              (0.0013293)        

p_15_20:AEZ_G6           -0.0030981***              0.0059540                0.0043432*        

                          (0.0009343)              (0.0080411)              (0.0022483)        

p_20up:AEZ_G6             -0.0034198**              0.0116821                0.0026233         

                          (0.0015682)              (0.0099285)              (0.0030226)        

---------------------------------------------------------------------------------------------- 

Observations               2,499,678                1,390,866                2,631,282         

R2                         0.6732797                0.7242579                0.8559615         

Adjusted R2                0.6703781                0.7218856                0.8547261         

Residual S.E.   0.1146734 (df = 2477673) 0.4096623 (df = 1379001) 0.4787755 (df = 2608905) 

============================================================================================== 

Note:                                                              *p<0.1; **p<0.05; ***p<0.01 
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Table 6B Regression summary with Clustered Robust S.E.s in parentheses: SLX specification 64 

============================================================================================== 

Dependent variable: log. Yield (Maize) 
             -------------------------------------------------------------------------- 

                           GAEZ-IMAGE                 pDSSAT                  PEGASUS     

---------------------------------------------------------------------------------------------- 

tas_5lo                  -0.0230029***            -0.0269091***            -0.0638193***       

                          (0.0021500)              (0.0045765)              (0.0058359)        

tas_5_7p5                -0.0079817***            -0.0193372***            -0.0459680***       

                          (0.0008647)              (0.0027104)              (0.0039757)        

tas_7p5_10               -0.0053334***            -0.0090300***            -0.0321966***       

                          (0.0004089)              (0.0016311)              (0.0026436)        

tas_10_12p5              -0.0017591***            -0.0049676***            -0.0173139***       

                          (0.0002414)              (0.0008198)              (0.0015128)        

tas_12p5_15              -0.0004220***            -0.0015532***             -0.0028145**       

                          (0.0001029)              (0.0003411)              (0.0013020)        

tas_17p5_20                0.0001053                0.0000145               0.0017176***       

                          (0.0000855)              (0.0002531)              (0.0004515)        

tas_20_22p5                -0.0000471               -0.0003695               0.0009369         

                          (0.0001570)              (0.0004670)              (0.0006430)        

tas_22p5_25                0.0001152                -0.0002868               -0.0007593        

                          (0.0002152)              (0.0006555)              (0.0008028)        

tas_25_27p5                0.0000389                0.0000459               -0.0018625*        

                          (0.0002609)              (0.0008241)              (0.0010231)        

tas_27p5_30                -0.0000372               0.0003257               -0.0025739**       

                          (0.0002974)              (0.0009896)              (0.0012235)        

tas_g30                    -0.0001746               -0.0003705               -0.0020536        

                          (0.0003324)              (0.0011687)              (0.0014116)        

p_3lo                     0.0001473**             -0.0022185***            -0.0013968***       

                          (0.0000702)              (0.0005018)              (0.0003799)        

p_3_4                     0.0002448***              0.0001290                -0.0002076        

                          (0.0000571)              (0.0003064)              (0.0002697)        

p_4_5                      0.0000435               -0.0004630**              -0.0001603        

                          (0.0000317)              (0.0002146)              (0.0001857)        

p_10_15                   -0.0000713**              -0.0000586               0.0001496         

                          (0.0000329)              (0.0002305)              (0.0002082)        

p_15_20                   -0.0001403**             -0.0007140*              0.0009527***       

                          (0.0000555)              (0.0004088)              (0.0003418)        

p_20up                   -0.0003027***             -0.0016558**             0.0017679***       

                          (0.0001026)              (0.0006474)              (0.0004848)        

tas_5lo_slag              0.0145492***             0.0240006***              0.0112411*        

                          (0.0021011)              (0.0051637)              (0.0067975)        

tas_5_7p5_slag            0.0050995***             0.0079912***              0.0086478*        

                          (0.0009276)              (0.0030695)              (0.0050011)        

tas_7p5_10_slag           0.0011268**              0.0063787***              0.0055387         

                          (0.0004996)              (0.0017170)              (0.0037834)        

tas_10_12p5_slag          -0.0006770**              -0.0010081             -0.0067201***       

                          (0.0003299)              (0.0011925)              (0.0025029)        

tas_12p5_15_slag           -0.0000551              -0.0022408**            -0.0038046***       

                          (0.0001738)              (0.0010097)              (0.0012225)        

tas_17p5_20_slag          -0.0002621**              -0.0000638              0.0060855***       

                          (0.0001293)              (0.0005550)              (0.0006977)        

tas_20_22p5_slag         -0.0004846***            -0.0019612***             0.0060967***       

                          (0.0001869)              (0.0006757)              (0.0008104)        

tas_22p5_25_slag          -0.0004864**            -0.0032427***             0.0038807***       

                          (0.0002364)              (0.0008046)              (0.0009836)        

tas_25_27p5_slag          -0.0006530**            -0.0035751***              0.0006559         

                          (0.0002742)              (0.0009700)              (0.0012372)        

tas_27p5_30_slag          -0.0007619**            -0.0044215***              -0.0022494        

                          (0.0003078)              (0.0010748)              (0.0014485)        

tas_g30_slag             -0.0011223***            -0.0090862***            -0.0091685***       

                          (0.0003337)              (0.0012385)              (0.0016962)        

p_3lo_slag               -0.0005219***            -0.0043274***             0.0062364***       

                          (0.0001337)              (0.0007592)              (0.0006468) 

        

                                                   
64 The bins / = 15~17.5 °' and 3 = 5~10 <</9 along with their spatial lagged terms were omitted in 
regressions as reference category. 
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Table 6B…continued 
============================================================================================== 

                           GAEZ-IMAGE                 pDSSAT                  PEGASUS     

---------------------------------------------------------------------------------------------- 

 

p_3_4_slag                0.0005469***             0.0034490**              0.0065028***       

                          (0.0000890)              (0.0013739)              (0.0010031)        

p_4_5_slag                 0.0000192                -0.0004045              0.0035296***       

                          (0.0000596)              (0.0008515)              (0.0004865)        

p_10_15_slag               0.0000112                -0.0005484             -0.0032466***       

                          (0.0000537)              (0.0005301)              (0.0003826)        

p_15_20_slag               0.0000184               -0.0027286**            -0.0041564***       

                          (0.0000782)              (0.0011673)              (0.0005789)        

p_20up_slag                0.0001189                -0.0018568             -0.0089135***       

                          (0.0001436)              (0.0012359)              (0.0008010)        

---------------------------------------------------------------------------------------------- 

Observations               2,684,928                1,500,606                2,642,138         

R2                         0.6891828                0.7313940                0.8584584         

Adjusted R2                0.6864283                0.7290922                0.8572468         

Residual S.E.      0.1127215 (df = 2661342) 0.4006451 (df = 1487855) 0.4745243 (df = 2619713) 

============================================================================================== 

Note:                                                              *p<0.1; **p<0.05; ***p<0.01 
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Appendix C: Supplementary material for Chapter 4 

1. Data 

Since the study primarily compares crop models’ simulated data with historical observed data; and the 

resulting coefficient estimates derived from regressions run on their respective panel, I discuss the two 

data independently.  

1.1 USDA historical observed data 

For comparison of the GGCMs’ yields with the factual yields, I employ historical observed annual county 

level production (EF%ℎ84, EF) and harvested areas (@`(8, @), made available by the USDA Quickstats 

database65. The data utilized in this study covers ∼1500 - 1800 counties in the U.S. over the period 1972–

2004 (33 years). Crop yields (EF/@) for each county are calculated as the ratio of production to harvested 

area. The conversion from EF/@ to "/ℎ@ for each crop (for consistency with GGCMs’ yield units) is 

described as below (table 1C). 

Table 1C.  Conversion from EF/@ to "/ℎ@ for each crop 

Crop åæ/� !/ç� 

Maize  1 0.0628  

Wheat 1 0.0673 
Soybeans 1 0.0673 

Some limitations to the USDA data include the inability to differentiate the irrigated and rainfed 

production by county. In line with my earlier analyses, I focus on rainfed regime of the ISIMIP-FT 

GGCMs’ simulations. Therefore, to maintain consistency with model data, I need to formulate a 

methodology to differentiate the irrigated and rainfed crop production by county. Following Sue Wing et 

al (2015), I utilize data on irrigation infrastructure collected from the U.S. Army Corps of Engineers’ 

National Inventory of Dams (USACE-NID, see Section 2 for further details), and assign the crops as 

rainfed of those counties where the cumulative quantity of water that is stored and potentially available 

for application to crops is zero. The final counties retained in regression analyses for each crop are shown 

in figure 1C (USDA panel). The result is an unbalanced panel (spanning years 1972-2004; see details of 

observations and number of counties in table 2C). 

 

                                                   
65 http://quickstats.nass.usda.gov/ 
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(i)                                         (ii)                                                    (iii)        

Figure 1C. Maps of USDA and GGCMs’ historical (1972~2004) mean county yields ("/ℎ@) for (i) Maize             
(ii) Wheat and (iii) Soybeans.  
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1.2. GGCM Data 

I utilize the annual gridded rainfed crop yields from the six GGCMs66 of ISIMIP-FT (Hempel et al 2013, 

Rosenzweig et al 2014), as in Chapters 2 and 3. The data used in this study however accounts for carbon 

dioxide ('GH) fertilization effects (CFE) and spans over the GGCMs’ historical simulation period 1972-

2004 (33 years). The global gridded data is subset to retain only the grid-cells covering mainland U.S., 

using the U.S. county polygon shapes files67 in R.  

An important difference to highlight in Chapter 4 is the spatial scales at which the comparison of 

GGCMs’ and USDA yields are undertaken. Since the ISIMIP-FT data is at 0.5° gridded resolution 

covering the entire U.S. (recalling that crop modelers were allowed to simulate yields over all land), for 

consistency with USDA county data I use U.S. county borders to mask the GGCMs’ data. The masked 

GGCM’s data would therefore retain all grid-cells that are encompassed within the overall county 

borders. Although this would result in a marginal higher number of observations for the GGCMs 

(compared to the USDA county data), my sensitivity checks reveal similar results if the GGCM gridded 

data are aggregated to the coordinates of the centroids of each county polygon shape. For consistency 

with the number of counties utilized in analyses of USDA crop yields, I retain the same counties in the 

GGCMs’ panels (table 2C). There are a few exceptions though with the smaller counties (<  0.5°  gridded 

resolution) not encompassing any grid-cells, and thus dropping out in the extraction process.  The number 

of grid-cells, counties and observations used in each crop~GGCM combination regression are 

summarized in table 2C. 

1.3 Crop growing seasons 

In line with the reasons highlighted in Section 2.2.1 (Chapter 2), for both USDA and GGCMs, I adopt a 

common, fixed, four-month crops growing season (CGS) as May-August (]YY^)68. The CGS varies not 

only for each crop-GGCM combination, but also in the historical and future periods of GGCMs’ 

simulated data (e.g. LPJ-GUESS and LPJmL mimic planting dates according to climatic conditions). 

However, the definition of CGS as done in this study by and large encapsulates the broader CGS across 

the GGCMs and crops. By doing so, I avoid the potential endogeneity problem with crop modellers’ 

                                                   
66 For details of modeling groups, see Section 1 in Appendix A.  

67 Shape files were downloaded from here https://www.census.gov/geo/maps-
data/data/cbf/cbf_counties.htmlhttps://www.census.gov/geo/maps-data/data/cbf/cbf_counties.html and processed 
using R packages raster, sp, and rgdal. 

68 Since all counties/grid-cells would fall in the northern hemisphere, the definition of crop growing season is 
consistent with the months for the northern hemisphere (as in Chapters 2 and 3) 
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definition of when planting and harvesting begin in each year. Nevertheless, it is important to highlight 

that the definition of CGS is also not likely to be consistent with the actual CGS for the USDA data (e.g. 

wheat is partly grown outside these months in the U.S.) and so the overall results of wheat could be 

marginally influenced by this assumption (for e.g., see Lobell and Field 2007 where in the results are 

fairly insensitive to the choice of CGS months for six crops examined in their study) 

1.4 Historical weather exposure for empirical analysis of USDA crop yields 

Using the Global Land Data Assimilation System (GLDAS) 3-hourly assimilated / and 3 observations at 

1° grid (Rodell et al 2004), I construct daily / and 3 E7$% as weather inputs for my empirical analysis. 

The / and 3 variables were bilinearly interpolated to U.S. county boundaries and counts of 3-hour 

exposure were accumulated over each annual growing season (]YY^).  

1.5. Historical weather exposure for empirical analysis of GGCMs’ crop yields 

All GGCM historical (1972-2004) crop yield simulation runs are forced with bias-corrected climate 

inputs (Hempel et al 2013) from HadGEM2-ES (Jones et al 2011).  In line with analyses in Chapters 2 

and 3, I matched the bias corrected HadGEM2-ES daily / and 3 as bins, to GGCM generated realizations 

of yield for each year of the historical period using the earlier methods described in Section 2.2.1 

(Chapter 2).  

2. U.S. Army Corps of Engineers’ National Inventory of Dams (USACE-NID) data 

To ensure that the counties retained in the USDA panel regressions represent rainfed crop yields, a proxy 

indicator that can identify counties with potential irrigation facilities is required. As discussed in detail by 

Sue Wing et al (2015) Supplementary Information (SI), I employ data on irrigation infrastructure 

collected from the USACE-NID, which records facilities’ location, primary purpose, storage capacity (of 

dams) and in-service dates. For simplicity and to avoid any potential discrepancy, I restrict my analyses to 

those counties where the maximum storage for counties (in the USACE-NID dataset) is assigned ‘0’ for 

all the years (1972~2004).   

3. Binning structure of temperature and precipitation in regressions 

The meteorological covariates are defined as the cumulative exposure to intervals (“bins”) of / and 3 

during the CGS of each year in both USDA and GGCMs’ regression specifications. The bins 

{/T, … , /V, 3T, … , 3W} are counts of number of days over the growing season at each GGCM grid-cell 
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(county for USDA regression) spent in � intervals69 of /(D85(88 '84`7F%, °') and [ intervals of 

3(<7447<7"8( >8( 9@6, <</9), where: 

� = {< 7.5, 7.5~10, 10~12.5, 12.5~15, 15~17.5, 17.5~20, 20~22.5, 22.5~25, 25~27.5, 27.5~30, > 30}   
and 

[ = { < 5, 5~10, 10~15, > 15}   
The bins � = 22.5~25 °' and  [ = 10~15 <</9 were omitted in regressions as reference category. 

Thus with reference to equation (4.1) in Chapter 4, each coefficient of / (3) indicates the impact (on 

4#5 67849) of an additional day in the �Nj ([Nj) interval, relative to a day in the dropped / (3) bin. All 

our regression specifications were run in R package Linear Fixed Effects (LFE) (Gaure 2013), which can 

handle arbitrary number of factors (fixed effects) and is tailored for fixed effect estimation on large panel 

data. To account for heteroscedasticity and autocorrelation in the error term RM,N (equation 4.1 of Chapter 

4), I used robust standard errors (SE)70 clustered by grid-cells.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                   
69 For each / and 3 bin except the extreme lower and upper values, the lower range is included in the count. The 
extreme bins are open-ended. 

70 The S.E.s are adjusted for the reduced degrees of freedom (DOF) coming from the dummies which are implicitly 
present. They are also small-sample corrected 
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Table 2C.  Number of observations, counties (in parentheses) and total grid-cells (in square parentheses) used in 
GGCMs and USDA regressions 

GGCM Maize  Wheat Soybeans 

GEPIC 
43,426 
(1,092) 
[1,352] 

41,056 
(999) 

[1,266] 

34,908 
(950) 

[1,092] 

GAEZ-IMAGE 
44,889 
(1,107) 
[1,393] 

42,463 
(1014) 
[1,301] 

28,279 
(900) 

[1,005] 

LPJ-GUESS 
44,864 
(1,083) 
[1,360] 

42,305 
(999) 

[1,283] 

36,332 
(943) 

[1,101] 

LPJmL 
45,853 
(1,107) 
[1,413] 

43,643 
(1014) 
[1,325] 

37,019 
(964) 

[1,145] 

pDSSAT 
41,273 
(1,096) 
[1,381] 

41,787 
(1014) 
[1,303] 

34,367 
(958) 

[1,121] 

PEGASUS 
43,901 
(1,086) 
[1,344] 

41,281 
(1258) 
[1,621] 

33,678 
(942) 

[1,082] 

Multi-GGCMa 
264,206                   
(1,107) 
[1,413] 

252,535 
(1014) 
[1,325] 

204,583 
(964) 

[1,145] 

USDA, full panelb 
72,967    
(2,691) 

66,249  
(2,479) 

56,412  
(2,193)  

USDA, rainfed panel 
51,089     
(1,828) 

42,752   
(1,653) 

41,510  
(1,605)  

a Multi-GGCM regressions were run on a combined panel of six GGCMs, with an additional 
factor (GGCM) in the regression specification (equation 4.1 in Chapter 4) 

b As part of sensitivity checks, regression on USDA panel was also run without differentiating 
between irrigated and rainfed yields. The estimated were found to be similar to those from the 
USDA rainfed panel 
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Table 3C.  Regression summary with Clustered Robust S.E. (in parentheses) for rainfed (i) Maize (ii) Soybeans and (iii) Wheat 

============================================================================================================================================================================================================================================= 

i.   Dependent variable: log. Yield (Maize) 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 

                USDA         GEPIC       GAEZ-IMAGE    LPJ-GUESS       LPJmL        pDSSAT       PEGASUS     Multi-GGCM        
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

tas_7p5lo                0.0029414**            0.0503259***            0.0014086             0.0062907***           0.0267604***            0.0015136            -0.0202699***           0.0109714***       

                         (0.0013286)            (0.0026835)            (0.0008723)            (0.0008973)            (0.0016423)            (0.0011419)            (0.0012738)             (0.0008560)       

tas_7p5_10                0.0006017             0.0219230***          -0.0031222***           0.0055467***           0.0084488***            0.0017254*           -0.0307178***             0.0006218        

                         (0.0008493)            (0.0020344)            (0.0008188)            (0.0008556)            (0.0014140)            (0.0010307)            (0.0013004)             (0.0006711)       

tas_10_12p5             -0.0023824***           0.0371449***            -0.0008933            0.0095065***           0.0132254***           0.0020942***          -0.0254167***           0.0060057***       

                         (0.0005364)            (0.0021383)            (0.0009162)            (0.0006822)            (0.0012250)            (0.0007898)            (0.0010213)             (0.0007005)       

tas_12p5_15             -0.0021785***           0.0285498***          -0.0028130***           0.0088264***           0.0085917***           0.0015205**           -0.0155689***           0.0048474***       

                         (0.0004239)            (0.0014379)            (0.0007020)            (0.0006246)            (0.0008280)            (0.0006259)            (0.0006721)             (0.0004767)       

tas_15_17p5             -0.0024319***           0.0300566***           -0.0009853**           0.0107690***           0.0133147***           0.0043416***          -0.0035697***           0.0089734***       

                         (0.0002623)            (0.0013913)            (0.0004857)            (0.0006117)            (0.0006988)            (0.0006221)            (0.0005482)             (0.0004859)       

tas_17p5_20              0.0009156***           0.0318692***            0.0004603             0.0083624***           0.0138893***           0.0071929***            -0.0005061            0.0101204***       

                         (0.0001750)            (0.0012546)            (0.0005578)            (0.0003769)            (0.0006858)            (0.0005435)            (0.0004528)             (0.0004641)       

tas_20_22p5              0.0013427***           0.0168075***            -0.0000663            0.0041365***           0.0059725***           0.0044163***           0.0017186***           0.0054607***       

                         (0.0001733)            (0.0010087)            (0.0003261)            (0.0002941)            (0.0005090)            (0.0004666)            (0.0003815)             (0.0003561)       

tas_25_27p5             -0.0034302***          -0.0209518***            0.0001067            -0.0067520***          -0.0096412***          -0.0061303***          -0.0084942***           -0.0085681***      

                         (0.0001786)            (0.0009893)            (0.0002312)            (0.0003380)            (0.0005347)            (0.0004972)            (0.0004656)             (0.0003811)       

tas_27p5_30             -0.0069894***          -0.0291915***            0.0002903            -0.0093059***          -0.0186805***          -0.0113753***          -0.0109311***           -0.0132110***      

                         (0.0002855)            (0.0014062)            (0.0003721)            (0.0004252)            (0.0006409)            (0.0004970)            (0.0006126)             (0.0004266)       

tas_g30                 -0.0091841***          -0.0404368***           0.0020532***          -0.0140636***          -0.0210601***          -0.0177628***          -0.0191294***           -0.0183610***      

                         (0.0004095)            (0.0012407)            (0.0003705)            (0.0003789)            (0.0008649)            (0.0005561)            (0.0005968)             (0.0003730)       

p_5lo                   -0.0078686***          -0.0243232***           -0.0009258**          -0.0098828***          -0.0159419***          -0.0117320***          -0.0031789***           -0.0109355***      

                         (0.0005292)            (0.0017548)            (0.0004168)            (0.0005973)            (0.0009124)            (0.0008551)            (0.0009504)             (0.0006264)       

p_5_10                  -0.0030719***          -0.0057338***            -0.0005488           -0.0017629***          -0.0052483***          -0.0035353***            0.0010602             -0.0026195***      

                         (0.0006067)            (0.0017815)            (0.0003842)            (0.0005230)            (0.0009161)            (0.0008469)            (0.0010986)             (0.0005843)       

p_15up                   0.0023167***           0.0046236**             0.0009314*            0.0059325***           0.0099634***           0.0059294***          -0.0045659***           0.0038275***       

                         (0.0006275)            (0.0022096)            (0.0005152)            (0.0006384)            (0.0010869)            (0.0010365)            (0.0012310)             (0.0007284)       

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Observations      51,089            43,426            44,889           44,864           45,853           41,273            43,901           264,206         

R2              0.7364114         0.7868651         0.6892234         0.8764847         0.8492243        0.7262140         0.6110207       0.7406698        

Adjusted R2     0.7263854         0.7797858         0.6789455         0.8724944         0.8442760        0.7164230         0.5983207       0.7322723        

Residual S.E.  0.216176(df=49216) 0.7957024(df=42029) 0.257544(df=43451)  0.23659(df=43459)   0.461562(df=44395)  0.371543(df=39847) 0.462408(df=42512) 0.566539(df=255918) 

===================================================================================================================================================== 

Note:                                                                                                                     *p<0.1; **p<0.05; ***p<0.01 
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======================================================================================================================================================================================================= 

ii.   Dependent variable: log. Yield (Soybeans) 
              ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

                             USDA                  GEPIC                GAEZ-IMAGE             LPJ-GUESS                LPJmL                  pDSSAT                PEGASUS               Multi-GGCM                 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

tas_7p5lo                 -0.0020043            0.0215894***            0.0024596*            0.0069627***           0.0419370***           0.0165029***          -0.0394296***           0.0102104***       

                         (0.0018295)            (0.0007812)            (0.0014743)            (0.0015333)            (0.0018472)            (0.0024836)            (0.0024415)             (0.0008192)       

tas_7p5_10                -0.0003167            0.0094857***          -0.0069068***           0.0106153***           0.0054723***            0.0056684*           -0.0251333***             0.0009813        

                         (0.0010250)            (0.0007340)            (0.0015411)            (0.0012686)            (0.0017655)            (0.0029096)            (0.0017582)             (0.0008585)       

tas_10_12p5             -0.0022235***           0.0146659***          -0.0068461***           0.0194705***           0.0111955***          -0.0092969***          -0.0265141***           0.0030275***       

                         (0.0006599)            (0.0007808)            (0.0012079)            (0.0008921)            (0.0015397)            (0.0021949)            (0.0015251)             (0.0008491)       

tas_12p5_15             -0.0038558***           0.0083743***          -0.0050278***           0.0180865***           0.0137083***          -0.0143583***          -0.0201772***           0.0020978***       

                         (0.0004538)            (0.0004157)            (0.0007662)            (0.0006835)            (0.0009947)            (0.0013297)            (0.0009570)             (0.0004434)       

tas_15_17p5             -0.0044738***           0.0084544***          -0.0028182***           0.0177465***           0.0198297***          -0.0060135***          -0.0065699***           0.0071700***       

                         (0.0002892)            (0.0003687)            (0.0006305)            (0.0004995)            (0.0008519)            (0.0013938)            (0.0007196)             (0.0003976)       

tas_17p5_20             -0.0008074***           0.0103046***           -0.0007707**           0.0149984***           0.0179208***            0.0017002             0.0015366**            0.0091276***       

                         (0.0001783)            (0.0003055)            (0.0003701)            (0.0004451)            (0.0007614)            (0.0010537)            (0.0006518)             (0.0003502)       

tas_20_22p5              0.0010007***           0.0069777***          -0.0010801***           0.0089160***           0.0117341***           0.0029999***           0.0012337**            0.0057479***       

                         (0.0001792)            (0.0003059)            (0.0002659)            (0.0003708)            (0.0005912)            (0.0008024)            (0.0005658)             (0.0002931)       

tas_25_27p5             -0.0021464***          -0.0101982***            0.0000124            -0.0095951***          -0.0105547***          -0.0186935***          -0.0058658***           -0.0091249***      

                         (0.0001498)            (0.0003279)            (0.0001497)            (0.0004097)            (0.0006123)            (0.0008785)            (0.0005620)             (0.0003160)       

tas_27p5_30             -0.0055394***          -0.0140244***           0.0004097**           -0.0135460***          -0.0172370***          -0.0277973***          -0.0076833***           -0.0131326***      

                         (0.0002096)            (0.0004302)            (0.0001847)            (0.0005978)            (0.0007450)            (0.0010783)            (0.0006546)             (0.0003290)       

tas_g30                 -0.0112451***          -0.0179849***           0.0010055***          -0.0217638***          -0.0205560***          -0.0408052***          -0.0173798***           -0.0176961***      

                         (0.0003987)            (0.0003963)            (0.0002760)            (0.0005838)            (0.0007441)            (0.0010999)            (0.0005459)             (0.0003451)       

p_5lo                   -0.0053936***          -0.0054759***            -0.0000242           -0.0063017***          -0.0073103***          -0.0545069***           0.0085216***           -0.0103624***      

                         (0.0004981)            (0.0005561)            (0.0006078)            (0.0007053)            (0.0012004)            (0.0018881)            (0.0013132)             (0.0006158)       

p_5_10                  -0.0016208***          -0.0016163***            0.0001564             -0.0017874**          -0.0062830***          -0.0144566***           0.0071557***           -0.0026706***      

                         (0.0005983)            (0.0005957)            (0.0006964)            (0.0007600)            (0.0013410)            (0.0019881)            (0.0015483)             (0.0006256)       

p_15up                   0.0022689***            0.0013255*             0.0009891             0.0128435***           0.0052602***           0.0170603***            0.0003457             0.0064598***       

                         (0.0006124)            (0.0006874)            (0.0007347)            (0.0008430)            (0.0014521)            (0.0023110)            (0.0016643)             (0.0007254)       

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Observations       41,510           34,908            28,279           36,332            37,019           34,367            33,677           204,582         

R2                0.7018623       0.8304705         0.3707549        0.8264802         0.6715554         0.6934535         0.4087950        0.6141671        

Adjusted R2       0.6895284       0.8247679         0.3465132        0.8208337         0.6606558         0.6826970         0.3883435        0.6013249        

Residual S.E.   0.180927(df=39860) 0.230332(df=33771)  0.238308(df=27229) 0.292614(df=35186)  0.552259(df=35829)  0.782370(df=33201) 0.493503(df=32550) 0.590675(df=197991) 

===================================================================================================================================================== 

Note:                                                                                                                    *p<0.1; **p<0.05; ***p<0.01 
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======================================================================================================================================================================================================= 

iii.   Dependent variable: log. Yield (Wheat) 
               --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

                USDA          GEPIC      GAEZ-IMAGE     LPJ-GUESS      LPJmL        pDSSAT       PEGASUS     Multi-GGCM        
           

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

tas_7p5lo                0.0076782***           0.0108508***          -0.0017360***           0.0258254***           0.0238067***           0.0169180***           -0.0022206*            0.0124392***       

                         (0.0015201)            (0.0007761)            (0.0006249)            (0.0006505)            (0.0014434)            (0.0015442)            (0.0012516)             (0.0005245)       

tas_7p5_10               0.0068445***           0.0085632***            -0.0001466            0.0153312***           0.0180041***           0.0131653***          -0.0070583***           0.0080738***       

                         (0.0008948)            (0.0008460)            (0.0006709)            (0.0005764)            (0.0010328)            (0.0012163)            (0.0011550)             (0.0004702)       

tas_10_12p5              0.0040388***           0.0137081***           -0.0020298**           0.0154553***           0.0150130***           0.0097757***           0.0058075***           0.0096794***       

                         (0.0006349)            (0.0006415)            (0.0008767)            (0.0004852)            (0.0005973)            (0.0011735)            (0.0008803)             (0.0003383)       

tas_12p5_15              0.0041869***           0.0131250***          -0.0029618***           0.0140379***           0.0079762***           0.0135785***           0.0055747***           0.0085229***       

                         (0.0004188)            (0.0005313)            (0.0006803)            (0.0004136)            (0.0004535)            (0.0009281)            (0.0008104)             (0.0003005)       

tas_15_17p5              0.0035122***           0.0128343***            -0.0003093            0.0115348***           0.0060941***           0.0107958***           0.0078107***           0.0080490***       

                         (0.0003223)            (0.0004798)            (0.0004888)            (0.0003725)            (0.0004097)            (0.0007988)            (0.0007311)             (0.0002868)       

tas_17p5_20              0.0019380***           0.0085079***            0.0003924             0.0081175***           0.0045173***           0.0057965***           0.0089977***           0.0059748***       

                         (0.0002147)            (0.0003900)            (0.0004285)            (0.0003685)            (0.0003027)            (0.0008266)            (0.0006991)             (0.0002703)       

tas_20_22p5              0.0007430***           0.0024996***            0.0001386             0.0028780***           0.0018667***            0.0015289*            0.0041844***           0.0021834***       

                         (0.0001712)            (0.0003194)            (0.0003042)            (0.0003115)            (0.0002796)            (0.0007946)            (0.0006052)             (0.0002372)       

tas_25_27p5             -0.0007894***            -0.0003115             -0.0004048           -0.0027728***          -0.0012307***            0.0004751            -0.0128928***           -0.0029281***      

                         (0.0001538)            (0.0003003)            (0.0002726)            (0.0003744)            (0.0002685)            (0.0006626)            (0.0006403)             (0.0002486)       

tas_27p5_30             -0.0007809***            -0.0005185             0.0001230            -0.0054077***            -0.0001344           -0.0031565***          -0.0192035***           -0.0047206***      

                         (0.0002100)            (0.0003180)            (0.0003158)            (0.0005311)            (0.0003294)            (0.0006731)            (0.0008093)             (0.0002697)       

tas_g30                 -0.0020952***          -0.0016770***            -0.0004210           -0.0114572***          -0.0056180***          -0.0055151***          -0.0251358***           -0.0083518***      

                         (0.0002941)            (0.0004226)            (0.0003090)            (0.0005358)            (0.0003842)            (0.0007326)            (0.0008163)             (0.0003035)       

p_5lo                    0.0039684***           -0.0014137**            0.0000899            -0.0056861***           0.0024935***            -0.0003045            0.0043478***            -0.0001153        

                         (0.0005209)            (0.0006488)            (0.0003645)            (0.0005644)            (0.0006043)            (0.0013119)            (0.0011592)             (0.0004151)       

p_5_10                   0.0012606**             0.0008180              0.0000058             -0.0011378*            0.0027146***            0.0010022             0.0036213***            0.0011557**       

                         (0.0006058)            (0.0007201)            (0.0003469)            (0.0006014)            (0.0007624)            (0.0015896)            (0.0013033)             (0.0004561)       

p_15up                  -0.0047483***            -0.0008077             0.0004688             0.0037713***          -0.0025329***            0.0012860            -0.0061317***            -0.0007149        

                         (0.0006256)            (0.0007622)            (0.0004195)            (0.0006691)            (0.0007555)            (0.0017229)            (0.0014108)             (0.0004917)       

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Observations       42,752           41,056             42,463           42,305           43,643            41,787           41,281           252,535         

R2                0.6803230        0.6347984         0.7157260        0.8943015        0.7605653         0.3618249        0.5995471        0.7003024        

Adjusted R2       0.6671089        0.6227613         0.7064270        0.8908785        0.7528113         0.3405676        0.5865052        0.6907759        

Residual S.E. 0.199791(df=41054)   0.293276(df=39745)   0.239063(df=41117) 0.246312(df=40977) 0.317761(df=42273)  0.569432(df=40439) 0.553398(df=39978) 0.429219(df=244754) 

===================================================================================================================================================== 

Note:                                                                                                                     *p<0.1; **p<0.05; ***p<0.01 
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4. Variation in historical observed (USDA) and simulated (GGCMs) yields empirically attributed to 

weather (	 and 
 bins)  

The adjusted fH (in table 3C) derived from the regression specification (equation 4.1 in Chapter 4) track 

how much of the cross-section/time-series variation in yields is explained by not only the predictor 

variables (/ and 3 bins), but also by the grid-cell fixed effects (�M) and the time effects (QN). In order to 

gauge how much, on average, the weather variables (/ and 3 bins) explain the cross-section/time-series 

variation in yields, table 4C summarizes the adjusted fH by stripping out the influencing effects of the 

idiosyncratic unobserved shocks (�M  and QN). These are obtained directly from R LFE package ‘Projected 

Model @9� − fH’ 

Table 4C.  Percentage of variation explained by the covariates (/ and 3) 

GGCM Maize  Wheat Soybeans 

GEPIC 37% 9% 50% 

GAEZ-IMAGE 0% 0% 0% 

LPJ-GUESS 44% 33% 51% 

LPJmL 33% 5% 23% 

pDSSAT 26% 1% 33% 

PEGASUS 16% 16% 11% 

Multi-GGCM 15% 3% 12% 

USDA  8% 0% 11% 

 

Across regions (here counties), GGCMs by and large have homogenous setup in non-weather parameters 

such as management practices, soil types, sowing dates, crop varieties etc. The proportion of variance in 

yields explained by weather is therefore by and large higher for GGCMs than in the empirical (USDA) 

model (table 4C). For the latter, a higher proportion of variance is explained by the heterogeneous non-

weather parameters.  

Focusing on GGCMs (table 4C), GAEZ-IMAGE is not well captured by the regression specification 

(equation 4.1 of Chapter 4). Furthermore, the fH is generally low in wheat for all GGCMs, except for 

LPJ-GUESS and PEGASUS. However, by and large the regression specification is able to explain 

between one-fifth to half of the variance in each of the six GGCMs, and slightly lower in the Multi-Model 

regression specification.  
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For the empirical model (USDA), the yield variance left unexplained by the regression specification is 

relatively larger to that of the GGCMs. The negligible variance explained by / and 3 for USDA wheat 

could be partly explained by the fact that across U.S. counties, wheat is grown in multiple seasons outside 

the months ]YY^ (CGS defined in this study), and is largely irrigated. For maize and soybeans, the fH  is 

marginally higher than wheat, but yet lower to the corresponding GGCMs’ crops specifications. The 

unexplained variance in USDA maize and soybeans likely reflects those non-weather variables that are 

omitted from the analysis, and that are subsequently absorbed by the fixed and/or year effects.  

5. Average change in exposure across HadGEM2-ES temperature and precipitation bins in RCP 8.5 

scenario, relative to historical (1972-2004)  

   

 

Figure 2C. Change in distribution of HadGEM2-ES temperature and precipitation bins, for two mean future periods 
in RCP 8.5 scenario.  

The change in number of days is computed by first averaging the number of days (in each bin) in each 

USDA crop county, for the historical and future periods. The average number of days (in each bin) are 

then computed over all counties. The difference in distribution is calculated as future period – historical 

period. 
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Table 5C.  Regression summary with Robust S.E. (in parentheses) for rainfed soybeans and wheat. The six regressions 
models (4.6 – 4.11) follow the specifications (eqs. 4.6 - 4.11) in Chapter 4. 

Dependent variable: Difference Estimated Coefficients (GGCMs - USDA) as defined in eqs. (4.6–4.11) of Chapter 4, for Soybeans 

 
(4.6) (4.7) (4.8) (4.9) (4.10) (4.11) 

 Potential Yield -0.012** -0.012* 0.003 -0.010** -0.020*** 0.006 

 
(0.006) (0.006) (0.002) (0.005) (0.005) (0.005) 

       Change in Cultivar 0.019*** 0.020*** -0.0003 0.025*** 0.036*** -0.001*** 

 
(0.007) (0.007) (0.0003) (0.005) (0.006) (0.000) 

       Dyn. planting 
Window 

-0.006 -0.007 
 

-0.016*** -0.017*** 
 

 
(0.003) (0.004) 

 
(0.003) (0.003) 

 
Heat stress -0.021*** -0.024*** 0.007 -0.021*** -0.034*** -0.001*** 

 
(0.007) (0.007) (0.004) (0.007) (0.008) (0.000) 

GGCM Calibration 
(Site) 

-0.008 -0.006 
 

0.003 -0.006 
 

 
(0.005) (0.004) 

 
(0.004) (0.005) 

 
I(hi_t * Pot_Yield) 

   
0.001 0.029*** 

 

    
(0.006) (0.004) 

 
I(hi_t * Cultivar) 

   
-0.025*** -0.053*** 

 

    
(0.007) (0.004) 

 
I(hi_t * 
Plant_window_Dyn)    

0.032*** 0.032*** 
 

    
(0.004) (0.004) 

 
I(hi_t * H_stress) 

   
0.002 0.032*** 

 

    
(0.008) (0.006) 

 
I(hi_t * Calib_Site) 

   
-0.026*** 

  

    
(0.005) 

  
I(lo_p * Pot_Yield) 

   
-0.018 

 
-0.004 

    
(0.015) 

 
(0.005) 

I(lo_p * Cultivar) 
   

0.002 
 

0.001*** 

    
(0.015) 

 
(0.00004) 

I(lo_p * 
Plant_window_Dyn)    

0.020*** 
  

    
(0.003) 

  
I(lo_p * H_stress) 

   
0.002 

 
0.012*** 

    
(0.016) 

 
(0.002) 

I(lo_p * Calib_Site) 
   

-0.034** 
  

    
(0.015) 

  
       

Adjusted F Statistic 
and 

4.289*** 4.885*** 1.553 42.577*** 24.052*** 2.325* 

Degress of Freedom (df = 4;77) (df = 4;59) (df = 2;17) (df = 14;77) (df = 8;59) (df = 5;17) 

       Observations 78 60 18 78 60 18 

Adjusted R2 0.101 0.147 -0.132 0.421 0.310 -0.355 

Residual Std. Error 0.014 (df = 73) 0.014 (df = 55) 0.014 (df = 15) 0.011 (df = 63) 0.012 (df = 51) 0.016 (df = 12) 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Dependent variable: Difference Estimated Coefficients (GGCMs - USDA) as defined in eqs. (4.6 – 4.11) of Chapter 4, for Wheat 

 
(4.6) (4.7) (4.8) (4.9) (4.10) (4.11) 

Potential Yield -0.003 -0.004 0.0001 -0.003 -0.007*** 0.003* 

 
(0.002) (0.002) (0.004) (0.002) (0.002) (0.001) 

Change in Cultivar 0.006* 0.009** -0.001 0.012*** 0.016*** 0.004*** 

 
(0.003) (0.003) (0.002) (0.003) (0.003) (0.000) 

Dyn. planting Window -0.006** -0.008*** 
 

-0.013*** -0.014*** 
 

 
(0.003) (0.003) 

 
(0.002) (0.002) 

 
Heat stress -0.005 -0.006 0.001 -0.0005 -0.003 -0.005*** 

 
(0.003) (0.004) (0.003) (0.003) (0.004) (0.000) 

GGCM Calibration 
(Site) 

0.003** 0.004** 
 

0.006*** 0.004** 
 

 
(0.001) (0.001) 

 
(0.001) (0.001) 

 
I(hi_t * Pot_Yield) 

   
0.002 0.012*** 

 

    
(0.003) (0.002) 

 
I(hi_t * Cultivar) 

   
-0.017*** -0.026*** 

 

    
(0.004) (0.003) 

 
I(hi_t * 
Plant_window_Dyn)    

0.019*** 0.021*** 
 

    
(0.003) (0.003) 

 
I(hi_t * H_stress) 

   
-0.019*** -0.012** 

 

    
(0.004) (0.004) 

 
I(hi_t * Calib_Site) 

   
-0.008*** 

  

    
(0.002) 

  
I(lo_p * Pot_Yield) 

   
0.001 

 
-0.004 

    
(0.004) 

 
(0.003) 

I(lo_p * Cultivar) 
   

-0.017*** 
 

-0.007*** 

    
(0.005) 

 
(0.002) 

I(lo_p * 
Plant_window_Dyn)    

0.016*** 
  

    
(0.004) 

  
I(lo_p * H_stress) 

   
0.002 

 
0.010*** 

    
(0.004) 

 
(0.002) 

I(lo_p * Calib_Site) 
   

-0.008*** 
  

    
(0.002) 

  

Adjusted F Statistic and 4.289*** 4.885*** 1.553 42.577*** 24.052*** 2.325* 

Degress of Freedom (df = 4;77) (df = 4;59) (df = 2;17) (df = 14;77) (df = 8;59) (df = 5;17) 

Observations 78 60 18 78 60 18 

Adjusted R2 0.128 0.210 -0.186 0.532 0.527 0.433 

Residual Std. Error 0.007 (df = 73) 0.007 (df = 55) 0.005 (df = 15) 0.005 (df = 63) 0.005 (df = 51) 0.003 (df = 12) 

Note: p<0.1; **p<0.05; ***p<0.01 
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